

Available online at www.sciencedirect.com

GEOMETRY AND PHYSICS

Journal of Geometry and Physics 57 (2007) 943-965

www.elsevier.com/locate/jgp

Hamiltonian diffeomorphisms of toric manifolds and flag manifolds

Andrés Viña

Departamento de Física, Universidad de Oviedo, Avda Calvo Sotelo, 33007 Oviedo, Spain

Received 11 January 2006; received in revised form 3 July 2006; accepted 16 July 2006 Available online 17 August 2006

Abstract

If *s* and *n* are integers relatively prime and $\operatorname{Ham}(G_s(\mathbb{C}^n))$ is the group of Hamiltonian symplectomorphisms of the Grassmannian manifold $G_s(\mathbb{C}^n)$, we prove that $\sharp \pi_1(\operatorname{Ham}(G_s(\mathbb{C}^n))) \ge n$.

We prove that $\pi_1(\text{Ham}(M))$ contains an infinite cyclic subgroup, when M is the one point blow up of $\mathbb{C}P^3$. We give a sufficient condition for the group $\pi_1(\text{Ham}(M))$ to contain a subgroup isomorphic to \mathbb{Z}^p , when M is a general toric manifold. © 2006 Elsevier B.V. All rights reserved.

MSC: 53D05; 57S05

Keywords: Hamiltonian diffeomorphisms; Symplectic fibrations; Toric manifolds

1. Introduction

Let (M, ω) be a closed symplectic 2*n*-manifold. By $\operatorname{Ham}(M, \omega)$ is denoted the group of Hamiltonian symplectomorphisms of (M, ω) [21,25]. The homotopy type of $\operatorname{Ham}(M, \omega)$ is only completely known in a few particular cases [20,25]. When *M* is a surface, $\operatorname{Diff}_0(M)$ (the connected component of the identity map in the diffeomorphism group of *M*) is homotopy equivalent to the symplectomorphism group of *M*, hence the topology of the groups $\operatorname{Ham}(M)$ in dimension 2 can be deduced from the description of the diffeomorphism groups of surfaces given in [6] (see [25]). On the other hand, positivity of the intersections of *J*-holomorphic spheres in 4-manifolds played a crucial role in the proof of results about the homotopy type of $\operatorname{Ham}(M)$ when *M* is a ruled surface (see [9,1, 2]). But these arguments which work in dimension 2 or dimension 4 cannot be generalized to higher dimensions.

Using properties of the symplectic action on quantizable manifolds, in [27] we gave a lower bound for $\sharp \pi_1(\operatorname{Ham}(\mathcal{Q}))$, when \mathcal{Q} is a quantizable coadjoint orbit of a semisimple Lie group G and this orbit satisfies some technical hypotheses. By quite different methods McDuff and Tolman have proved the following result: if \mathcal{O} is a coadjoint orbit of the semisimple group G, and the action of G on \mathcal{O} is effective, then the inclusion $G \to \operatorname{Ham}(\mathcal{O})$ induces an injection on π_1 [23]. This result answers a question posed in [29].

Here we give a new approach to determine lower bounds for $\sharp \pi_1(\text{Ham}(\mathcal{O}))$. We will consider curves in G with initial point at e. Every family $\{g_t \mid t \in [0, 1]\}$ of elements of G, with $g_0 = e$ and $g_1 \in Z(G)$ defines a loop ψ in the group $\text{Ham}(\mathcal{O})$. We will use the Maslov index of the linearized flow to deduce conditions under which the loops

E-mail address: vina@uniovi.es.

^{0393-0440/\$ -} see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.geomphys.2006.07.004

 ψ and $\tilde{\psi}$, generated by the families g_t and \tilde{g}_t with different endpoints, are not homotopic. So our lower bounds for $\sharp \pi_1(\text{Ham}(\mathcal{O}))$ will be no bigger than $\sharp Z(G)$.

In particular we consider the group SU(n + 1) and an orbit \mathcal{O} diffeomorphic to the Grassmannian $G_s(\mathbb{C}^{n+1})$ of *s*-dimensional subspaces in \mathbb{C}^{n+1} , with *s* and *n* + 1 relatively prime. For each element of Z(SU(n + 1)) we will construct a curve g_t in SU(n + 1) such that the corresponding loops in Ham(\mathcal{O}) relative to different elements of Z(SU(n+1)) have distinct Maslov indices. So these loops are homotopically inequivalent, and we have the following theorem.

Theorem 1. If \mathcal{O} is a coadjoint orbit of SU(n + 1) diffeomorphic to the Grassmannian $G_s(\mathbb{C}^{n+1})$ with s and n + 1 relatively prime, then

$$\sharp \pi_1(\operatorname{Ham}(\mathcal{O})) \ge n+1.$$

(1.1)

In [27] we gave a lower bound for $\sharp \pi_1(\text{Ham}(Q))$, when Q is a *quantizable* coadjoint orbit. For the Grassmann manifolds to which the results of [27] are applicable, the bound given in [27] coincides with (1.1). However the results obtained here are more general, since now we do not assume that O is quantizable. We also give a lower bound for $\sharp \pi_1(\text{Ham}(O))$ when O is a coadjoint orbit of SU(n + 1) diffeomorphic to a general flag manifold in \mathbb{C}^{n+1} .

On the other hand, a loop ψ in the group $\operatorname{Ham}(M, \omega)$ determines a Hamiltonian fibration $E \xrightarrow{\pi} S^2$ with standard fibre M. On the total space E we can consider the first Chern class $c_1(VTE)$ of the vertical tangent bundle of E. Moreover on E is also defined the coupling class $c_{\psi} \in H^2(E, \mathbb{R})$ [11]. This class is determined by the following properties:

(i) $i_q^*(c_{\psi})$ is the cohomology class of the symplectic structure on the fibre $\pi^{-1}(q)$, where i_q is the inclusion of $\pi^{-1}(q)$ in *E* and *q* is an arbitrary point of S^2 .

(ii) $(c_{\psi})^{n+1} = 0.$

These canonical cohomology classes of E determine the characteristic number [19]

$$I_{\psi} = \int_{E} c_1 (VTE) c_{\psi}^n. \tag{1.2}$$

 I_{ψ} depends only on the homotopy class of ψ . Moreover I is an \mathbb{R} -valued group homomorphism on $\pi_1(\operatorname{Ham}(M, \omega))$, so the non-vanishing of I implies that the group $\pi_1(\operatorname{Ham}(M, \omega))$ is infinite. That is, I can be used to detect the infinitude of the corresponding homotopy group. Furthermore I calibrates the Hofer's norm ν on $\pi_1(\operatorname{Ham}(M, \omega))$ in the sense that $\nu(\psi) \geq C |I_{\psi}|$, for all ψ , where C is a positive constant [25].

In [28] we gave an explicit expression for the value of the characteristic number I_{ψ} . This value can be calculated if one has a family of local symplectic trivializations of TM at one's disposal, whose domains cover M and are fixed by the ψ_t 's (see Theorem 3 in [28]). In this paper we use this theorem of [28] to prove that $\pi_1(\text{Ham}(M))$ contains an infinite cyclic subgroup, when M is the one point blow up of $\mathbb{C}P^3$. More precisely, in Section 3 we will prove the following result about the Hamiltonian group of the one point blow up of $\mathbb{C}P^3$.

Corollary 2. Let (M, ω) be the symplectic toric 6-manifold associated to the polytope obtained truncating the tetrahedron of \mathbb{R}^3 with vertices (0, 0, 0), $(\tau, 0, 0)$, $(0, \tau, 0)$, $(0, 0, \tau)$ by a horizontal plane [10], then $\pi_1(\text{Ham}(M, \omega))$ contains an infinite cyclic subgroup.

Using quite different techniques McDuff and Tolman proved this result in [24].

We also give a sufficient condition for $\pi_1(\text{Ham}(M))$ to contain a subgroup isomorphic to \mathbb{Z}^p , when M is a general toric manifold. More precisely, let \mathbb{T} be the torus $(S^1)^r$, and $\mathfrak{t} = \mathbb{R} \oplus \cdots \oplus \mathbb{R}$ its Lie algebra. Given $w_j \in \mathbb{Z}^r$, with $j = 1, \ldots, m$ and $\tau \in \mathbb{R}^r$ we put

$$M = \left\{ z \in \mathbb{C}^m : \pi \sum_{j=1}^m |z_j|^2 w_j = \tau \right\} / \mathbb{T},$$
(1.3)

where the relation defined by \mathbb{T} is

$$(z_j) \simeq (z'_j)$$
 iff there is $\xi \in \mathfrak{t}$ such that $z'_j = z_j e^{2\pi i \langle w_j, \xi \rangle}$ for $j = 1, \dots, m$. (1.4)

$$z \in \mathbb{C}^m \mapsto \pi \sum_{j=1}^m |z_j|^2 w_j \in \mathbb{R}^r.$$

Then *M* is a closed toric manifold of dimension 2n := 2(m - r) [22].

For j = 1, ..., m we put ${}^{j}\psi_{t}$ for the symplectomorphism

$${}^{j}\psi_t:[z]\in M\mapsto [z_1,\ldots,z_j\,\mathrm{e}^{2\pi\mathrm{i} t},\ldots,z_m]\in M.$$

Let f_i be the corresponding normalized Hamiltonian and

$$\alpha_j := \sum_{k=1}^m \left(\int_{\{[z]: z_k = 0\}} f_j \omega^{n-1} \right).$$
(1.5)

In Section 4 we will prove the following theorem.

Theorem 3. Let (M, ω) be the toric manifold defined by (1.3) and (1.4). If there are p numbers linearly independent over \mathbb{Z} in the set $\{\alpha_1, \ldots, \alpha_m\}$, where α_j is defined by (1.5), then $\pi_1(\text{Ham}(M, \omega))$ contains a subgroup isomorphic to \mathbb{Z}^p . (If p = 0 we mean by \mathbb{Z}^p the trivial group.)

If (M, ω) is the toric manifold determined by the Delzant polytope $\Delta \subset \mathfrak{t}^*$, where *T* is an *n*-dimensional torus, we deduce a formula for the value of *I* on the Hamiltonian loops generated by the effective action of *T* on *M*. In this formula geometrical magnitudes relative of Δ and the generator of the loop are involved (Proposition 9).

We denote by $M_H := E\operatorname{Ham}(M) \times_{\operatorname{Ham}(M)} M \to B\operatorname{Ham}(M)$ the universal bundle, with fibre M, over the classifying space $B\operatorname{Ham}(M)$. Let $\mathbf{c} \in H^2(M_H, \mathbb{R})$ denote the coupling class [14]. If G is a compact Lie group and $\phi : G \to \operatorname{Ham}(M)$ be a group homomorphism, then ϕ induces a map $\Phi : BG \to B\operatorname{Ham}(M)$ between the corresponding classifying spaces. By means of this map the class \mathbf{c} induces a class $c_{\phi} \in H^2(M_{\phi})$, where $M_{\phi} = EG \times_G M$. The class c_{ϕ} is in fact the coupling class of the Hamiltonian fibration $M_{\phi} \xrightarrow{P} BG$ [21]. Using c_{ϕ} and $c_1^{\phi}(TM)$, the G-equivariant first Chern class of TM, we define

$$R_i(\phi) \coloneqq p_*((c_1^{\phi}(TM))^i (c_{\phi})^{n-i}),$$

 p_* being the integration along the fiber. The classes $R_i(\phi)$ were used in the paper [14] to study the cohomology of classifying spaces, and they are generalizations of the Miller–Morita–Mumford classes. Furthermore $R_i(\phi)$ can be calculated by the localization formula in *G*-equivariant cohomology.

In the set of all Lie group homomorphisms from *G* to $\operatorname{Ham}(M)$ we declare that two elements are equivalent if they are homotopic by means of a family of *Lie group homomorphisms* from *G* to $\operatorname{Ham}(M)$. The quotient set is denoted by $[G, \operatorname{Ham}(M)]_{gh}$. If ϕ and $\tilde{\phi}$ are two Hamiltonian *G*-actions on *M* which define the same element in $[G, \operatorname{Ham}(M)]_{gh}$, then $R_i(\phi) = R_i(\tilde{\phi})$. Thus, one has a numerical criterion for two Hamiltonian *G*-actions not to be equivalent under homotopies consisting of Hamiltonian *G*-actions. We will prove the existence of pairs of Hamiltonian circle actions in a Hirzebruch surface, which define the same element in $\pi_1(\operatorname{Ham})$ but its classes in $[U(1), \operatorname{Ham}(M)]_{gh}$ are not equal.

If $\mu : M \to \mathfrak{g}^*$ is a moment map for a *G*-action ϕ on *M*, we denote with Ω_{ϕ} the equivariant closed 2-form $\omega + \mu$ [13]. Given $Z \in \mathfrak{g}$ we denote by $\mathcal{R}_{\phi}(Z)$ the number

$$\mathcal{R}_{\phi}(Z) := (2\pi \mathbf{i})^{-n} \int_{M} e^{\mathbf{i}\Omega_{\phi}(Z)}.$$
(1.6)

When G = U(1) and μ is normalized, Ω_{ϕ} is a representative of the coupling class c_{ϕ} . If $X \in \mathfrak{g}$ generates a loop ϕ in Ham(\mathcal{O}), where \mathcal{O} is a regular coadjoint orbit of G, then $\mathcal{R}_{\phi}(X)$ is the Fourier transform of the orbit and the Harish-Chandra Theorem (see [5]) allows us to calculate $\mathcal{R}_{\phi}(X)$ in terms of the root structure of \mathfrak{g} . Using this fact we give an example of two Hamiltonian circle actions on $\mathbb{C}P^1$ which define the same element in π_1 (Ham) but they are not homotopic by a family of circle actions.

The paper is organized as follows. In Section 2 we calculate the Maslov index of the linearized flow of certain loops in the Hamiltonian group of flag manifolds, and determine lower bound for the corresponding $\sharp \pi_1$ (Ham).

If *M* is the one point blow up of $\mathbb{C}P^3$, then *M* is a submanifold of $\mathbb{C}P^1 \times \mathbb{C}P^3$, and the natural actions of U(1) on the projective spaces define Hamiltonian loops ψ in *M*. Section 3 is concerned with the determination of I_{ψ} for these loops. As a consequence of these calculations we deduce that $\mathbb{Z} \subset \pi_1(\text{Ham}(M))$.

In Section 4 we generalize the arguments developed in Section 3 to toric manifolds. From this generalization it follows a sufficient condition, stated in Theorem 3, for the existence of an infinite subgroup in $\pi_1(\text{Ham}(M))$, when M is a toric manifold. Finally we check that this sufficient condition does not hold for $\mathbb{C}P^n$ with n = 1, 2. This is consistent with the fact that $\pi_1(\text{Ham}(\mathbb{C}P^n))$ is finite for n = 1, 2.

In Section 5 the $R_i(\phi)$ are introduced. If M is a Hirzebruch surface, the toric structure allows us to define two Hamiltonian S^1 -actions ϕ , $\tilde{\phi}$, which are not homotopic by means of a set of U(1)-actions, since $R_1(\phi) \neq R_1(\tilde{\phi})$. When M satisfies some additional hypotheses we will prove the existence of infinitely many pairs (ζ, ζ') of circle actions on M, such that $[\zeta] = [\zeta'] \in \pi_1(\text{Ham}(M))$, but $[\zeta] \neq [\zeta'] \in [U(1), \text{Ham}(M)]_{gh}$.

Conventions. We use the following conventions. If f_t is a time-dependent Hamiltonian on (M, ω) , the corresponding Hamiltonian vector Y_t is defined by

$$\iota_{Y_t}\omega = -\mathrm{d}f_t. \tag{1.7}$$

This time-dependent vector field vector determines the respective family ψ_t of symplectomorphisms by

$$\frac{\mathrm{d}}{\mathrm{d}t}\psi_t = Y_t \circ \psi_t, \qquad \psi_0 = \mathrm{id}. \tag{1.8}$$

If the group G acts on M and $X \in \mathfrak{g}$, by X_M is denoted the vector field whose value at $x \in M$ is

$$X_M(x) = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \mathrm{e}^{-tX} x.$$
(1.9)

If the action of *G* is Hamiltonian, a moment map $\mu : M \to \mathfrak{g}^*$ satisfies $d\mu(X) = \iota_{X_M}\omega$. According to (1.7) and (1.8) the function $f := \mu(X)$ defines the isotopy ϕ_t^X given by

$$\phi_t^X(x) := e^{tX}x. \tag{1.10}$$

Given $E \to M$ is a *G*-equivariant bundle, *s* is a section of *E* and $X \in \mathfrak{g}$, we define the action of *X* on *s* as the section *Xs*

$$(Xs)(x) = \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} (\mathrm{e}^{tX}) \cdot s(\mathrm{e}^{-tX}x).$$
(1.11)

2. Lower bounds for $\sharp \pi_1(\text{Ham}(\mathcal{O}))$

2.1. Maslov index of the linearized flow

We denote by (M, ω) a closed, connected, symplectic, 2n-dimensional manifold. Let $\psi : \mathbb{R}/\mathbb{Z} \to \text{Ham}(M, \omega)$ be a loop in the group of Hamiltonian symplectomorphisms at Id. Given $x \in M$, the curve $C := \{\psi_t(x) \mid t \in [0, 1]\}$ is null-homotopic [18]. Let S be a 2-dimensional singular disc in M whose boundary is C, and let X_1, \ldots, X_{2n} be vector fields on S which form a symplectic basis of T_pM for each $p \in S$. Then

$$(\psi_t)_*(X_i(x)) = \sum_k A^k_i(t, x) X_k(x_t),$$

with $x_t := \psi_t(x)$ and $A \in Sp(2n, \mathbb{R})$. By ρ will be denoted the usual map $Sp(2n, \mathbb{R}) \to U(1)$ which restricts to the determinant map on U(n) [26]. Setting $a(t, x) := \rho(A(t, x))$, we write $J_{\psi}(X, x)$ for the winding number of the map $t \in \mathbb{R}/\mathbb{Z} \to a(t, x) \in U(1)$. That is,

$$J_{\psi}(X,x) = \frac{1}{2\pi i} \int_0^1 a^{-1} \frac{\partial a}{\partial t}(t,x) dt.$$

If N is the minimal Chern number of M on spheres, the class of $J_{\psi}(X, x)$ in $\mathbb{Z}/2N\mathbb{Z}$ only depends on the homotopy class of $[\psi]$. The element in $\mathbb{Z}/2N\mathbb{Z}$ defined by $J_{\psi}(X, x)$ will be denoted $J[\psi]$ and is the Maslov index of the flow ψ_{t*} .

2.2. Coadjoint orbits

Let G be a compact semisimple Lie group, and η an element of \mathfrak{g}^* , the dual of the Lie algebra of G. We denote by \mathcal{O} the coadjoint orbit of η equipped with the standard symplectic structure [17]. This orbit can be identified with G/G_{η} , where G_{η} is the stabilizer of η for the coadjoint action of G. The subgroup G_{η} contains a maximal torus T of G [12]. We have the decomposition of $\mathfrak{g}_{\mathbb{C}}$ as a direct sum of root spaces

$$\mathfrak{g}_{\mathbb{C}} = \mathfrak{t}_{\mathbb{C}} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha},$$

with Φ the set of roots determined by T. We denote by $\check{\alpha} \in [\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}]$ the coroot of α . Let \mathfrak{p} be the parabolic subalgebra

$$\mathfrak{p} = \mathfrak{t}_{\mathbb{C}} \oplus \bigoplus_{\eta(i\check{\alpha}) \ge 0} \mathfrak{g}_{\alpha}$$

By Z_A is denoted the right invariant vector field on G determined by $A \in \mathfrak{p}$. Since \mathfrak{p} is a subalgebra, $\{Z_A \mid A \in \mathfrak{p}\}$ defines an integrable distribution on G. Its projection onto G/G_η is a complex structure on the orbit \mathcal{O} compatible with the symplectic structure. If P is the parabolic subgroup of $G_{\mathbb{C}}$ generated by \mathfrak{p} , $G_{\mathbb{C}}/P$ is this complexification of $G/G_\eta = \mathcal{O}$, and

$$T^{1,0}_\eta \simeq \mathfrak{g}_\mathbb{C}/\mathfrak{p} \simeq \bigoplus_{\alpha \in \Lambda} \mathfrak{g}_\alpha \eqqcolon \mathfrak{n},$$

where $\Lambda = \{\beta_1, \ldots, \beta_r\}$ is a subset of Φ . Let A_1, \ldots, A_r be a \mathbb{C} -basis for \mathfrak{n} , with $A_j \in \mathfrak{g}_{\beta_j}$, then $\{Z_{A_j}\}_j$ is a local frame for $T^{1,0}\mathcal{O}$ on a neighborhood U of η .

If $\{g_t \mid t \in [0, 1]\}$ is a family of elements of G, such that $g_0 = e$ and $g_1 \in Z(G)$, then

$$\{\psi_t : gG_\eta \in G/G_\eta \mapsto g_t gG_\eta \in G/G_\eta\}_{t \in [0,1]}$$

is a loop in $Ham(\mathcal{O})$. Furthermore

$$(\psi_t)_* Z_{A_j} = Z_{g_t \cdot A_j},\tag{2.1}$$

with $g \cdot A := \operatorname{Ad}_g A$.

Let $g_t = \exp(C_t)$, with $C_t \in \mathfrak{t}$ and $C_0 = 0$. As $[C_t, E] = \alpha(C_t)E$ if $E \in \mathfrak{g}_{\alpha}$, then we have

$$\operatorname{Ad}_{g_t} A_j = \exp(\beta_j(C_t))A_j.$$

It follows from (2.1) that for $v \in U$ the matrix of $(\psi_t)_*(v)$ with respect $\{Z_{A_i}\}_i$ is

diag
$$\left(e^{\beta_1(C_t)},\ldots,e^{\beta_r(C_t)}\right)\in U(r).$$

The Maslov index $J[\psi]$ is the class in $\mathbb{Z}/2N\mathbb{Z}$ of the winding number of the map

$$t \in [0,1] \mapsto \exp\left(\sum_{j=1}^{r} \beta_j(C_t)\right) = \exp\left(\sum_{\alpha \in \Lambda} \alpha(C_t)\right) \in U(1).$$
(2.2)

That is,

$$J[\psi] = \frac{1}{2\pi i} \sum_{\alpha \in \Lambda} \alpha(C_1) + 2N\mathbb{Z}$$

We have the following proposition.

Proposition 4. Let \mathcal{O} be a coadjoint orbit of G whose complexification is $G_{\mathbb{C}}/P$, with $\mathfrak{g}_{\mathbb{C}}/\mathfrak{p} \simeq \bigoplus_{\alpha \in \Lambda} \mathfrak{g}_{\alpha}$. Let $\{C_t\}_{t \in [0,1]}$ be a curve in \mathfrak{t} such that $C_0 = 0$ and $\exp(C_1) \in Z(G)$. If

$$\frac{1}{2\pi \mathrm{i}} \sum_{\alpha \in \Lambda} \alpha(C_1) \notin 2N\mathbb{Z},$$

then $g_t = \exp(C_t)$ defines a nontrivial element in $\pi_1(\text{Ham}(\mathcal{O}))$.

2.3. Flag manifolds in \mathbb{C}^{n+1}

From now to the end of Section 2 *G* will be the group SU(n + 1), and *T* the subgroup of diagonal elements. We denote by Δ the usual base of roots; that is, $\Delta = \{\alpha_1, \ldots, \alpha_n\}$, where $\alpha_i = \epsilon_i - \epsilon_{i+1}$ (we use the notation of [8]). Each subset $I \subset \Delta$ determines a parabolic subgroup P_I of $SL(n + 1, \mathbb{C})$. This subgroup is generated by the subalgebra

$$\mathfrak{p}_I = \mathfrak{t}_{\mathbb{C}} \oplus \bigoplus_{\alpha \in \widetilde{I}} \mathfrak{g}_{\alpha},$$

where \tilde{I} consists of all roots that can be written as sums of negative elements in I together with all positive roots [7]. If $I = \Delta - \{\alpha_n\}$, then $\mathfrak{p}_I = \mathfrak{gl}(n, \mathbb{C})$ and $\mathfrak{sl}(n+1, \mathbb{C})/\mathfrak{p}_I$ is isomorphic

$$\bigoplus_{j=1}^n \mathfrak{g}_{\beta_j} = \mathfrak{n},$$

with $\beta_i = \epsilon_{n+1} - \epsilon_i$. In this case

$$SL(n+1,\mathbb{C})/P_I \simeq SU(n+1)/U(n) = \mathbb{C}P^n$$
.

Next we will determine a lower bound for $\sharp \pi_1(\text{Ham}(\mathcal{O}))$, when \mathcal{O} is a coadjoint orbit of SU(n+1) diffeomorphic to $\mathbb{C}P^n$. Let us take a complex number z such that $z^{n+1} = 1$, and put

$$g_t := \operatorname{diag}\left(z^t, \dots, z^t, z^{-nt}\right) \in T \subset SU(n+1)$$

So $g_1 \in Z(SU(n+1))$, and moreover $g_t = \exp(C_t)$, with

$$C_t = \frac{2k\pi it}{n+1} \operatorname{diag}(1, \dots, 1, -n),$$
(2.3)

where k is any element of $\{0, 1, ..., n\}$. Then $(\epsilon_{n+1} - \epsilon_i)(C_t) = -2k\pi t i$, and in this case the map (2.2) is

$$t \in [0, 1] \mapsto \exp(-2kn\pi t \mathbf{i}) \in U(1),$$

whose winding number is -kn. Hence, for k = 0, 1, ..., n we obtain loops $\{k \psi_t \mid t \in [0, 1]\}$ in Ham(\mathcal{O}) such that the corresponding Maslov indices take the values

$$J[_k\psi] = -kn + 2N\mathbb{Z}.$$

The minimal Chern number of $\mathbb{C}P^n$ is equal to n+1. As $-kn+2(n+1)\mathbb{Z} \neq -jn+2(n+1)\mathbb{Z}$ for $k \neq j \in \{0, 1, \dots, n\}$, then $[_k \psi] \neq [_j \psi] \in \pi_1(\text{Ham}(\mathcal{O}))$. We have proved the following theorem.

Theorem 5. If \mathcal{O} is a coadjoint orbit of SU(n+1) diffeomorphic to $\mathbb{C}P^n$, then $\sharp \pi_1(\operatorname{Ham}(\mathcal{O})) \ge n+1$.

It is known that $\pi_1(\text{Ham}(\mathbb{C}P^1)) = \mathbb{Z}/2\mathbb{Z}$ and that $\text{Ham}(\mathbb{C}P^2)$ has the homotopy type of PU(3) [9], so $\#\pi_1(\text{Ham}(\mathbb{C}P^2)) = 3$. The bound given in Theorem 5 is compatible with those facts.

Proof of Theorem 1. Now we consider coadjoint orbits of SU(n + 1) which are diffeomorphic to the Grassmannian $G_s(C^{n+1})$ of *s*-dimensional subspaces of \mathbb{C}^{n+1} . Let \mathfrak{p} be the parabolic subalgebra generated by $I = \Delta - \{\alpha_s\}$; that is, we delete the *s*-node in the Dynkin diagram. (If s = n, the corresponding Grassmannian is $\mathbb{C}P^n$.) Now

$$\mathfrak{s}l(n+1,\mathbb{C})/\mathfrak{p} = \bigoplus_{\beta} \mathfrak{g}_{\beta}$$

with $\beta = \epsilon_j - \epsilon_i$, $j = s + 1, \dots, n + 1$ and $i = 1, \dots, s$.

With the above notations $(\epsilon_j - \epsilon_i)(C_i) = 0$ for any *i*, *j* with $j \neq n + 1$. Now the map (2.2) is

$$t \in [0, 1] \mapsto \exp(-2kst\pi i) \in U(1),$$

and its winding number is -ks. The minimal Chern number N for the Grassmannian $G_s(\mathbb{C}^{n+1})$ is n + 1. If s and n + 1 are relatively prime then

$$\#\{-ks + 2(n+1)\mathbb{Z} \mid k = 0, 1, \dots n\} = n+1. \ \Box$$

Given p a parabolic subalgebra of $\mathfrak{sl}(n+1,\mathbb{C})$ which contains the standard Borel subalgebra, then

$$\mathfrak{sl}(n+1,\mathbb{C})/\mathfrak{p}\simeq \bigoplus_{\beta\in\Lambda}\mathfrak{g}_{\beta},$$

where $\Lambda = \Phi \setminus \tilde{I}$.

Given $a \in \{1, ..., n + 1\}$ we put

$$\langle a \rangle = \sharp \{ \beta = \epsilon_i - \epsilon_a \in \Lambda \} - \sharp \{ \beta = \epsilon_a - \epsilon_j \in \Lambda \}.$$

$$(2.4)$$

Let $C_t(a)$ be the element of t defined by

$$C_t(a) = \frac{2k\pi i t}{n+1} \operatorname{diag}(1, \dots, 1, -n, 1, \dots, 1),$$
(2.5)

where -n is in the position *a*. The element C_t in (2.3) is equal to $C_t(n + 1)$. We consider the curve $g_t = \exp(C_t(a))$, then

$$\sum_{\beta \in \Lambda} \beta(C_t(a)) = 2kit \langle a \rangle,$$

and the winding number of the map $t \mapsto \exp \sum \beta(C_t(a))$ is $k\langle a \rangle$. Hence

 $\sharp \pi_1 \left(\operatorname{Ham}(SL(n+1,\mathbb{C})/P) \right) \ge \sharp \{ k \langle a \rangle + 2N\mathbb{Z} \mid k = 0, 1, \dots, n \}.$

So one arrives at the following result.

Theorem 6. If \mathcal{O} is a coadjoint orbit of SU(n+1) diffeomorphic to the flag manifold $SL(n+1,\mathbb{C})/P$, then

$$\sharp \pi_1 \left(\operatorname{Ham}(\mathcal{O}) \right) \ge \max_{a=1,\dots,n+1} (\sharp \{ k \langle a \rangle + 2N\mathbb{Z} \mid k = 0, 1, \dots, n \}),$$

where the integer $\langle a \rangle$ is defined by the parabolic subalgebra \mathfrak{p} by (2.4).

3. Hamiltonian group of the one point blow up of $\mathbb{C}P^3$

Given $\tau, \sigma \in \mathbb{R}_{>0}$, with $\sigma < \tau$, let *M* be the following manifold

$$M = \{ z \in \mathbb{C}^5 : |z_1|^2 + |z_2|^2 + |z_3|^2 + |z_5|^2 = \tau/\pi, |z_3|^2 + |z_4|^2 = \sigma/\pi \} / \mathbb{T},$$
(3.1)

where the action of $\mathbb{T} = (S^1)^2$ is defined by

$$(a,b)(z_1, z_2, z_3, z_4, z_5) = (az_1, az_2, abz_3, bz_4, az_5),$$

$$(3.2)$$

for $a, b \in S^1$.

M is a toric 6-manifold; more precisely, it is the toric manifold associated to the polytope obtained truncating the tetrahedron of \mathbb{R}^3 with vertices

 $(0, 0, 0), (\tau, 0, 0), (0, \tau, 0), (0, 0, \tau)$

by a horizontal plane through the point $(0, 0, \lambda)$, with $\lambda := \tau - \sigma$ [10].

For $0 \neq z_j \in \mathbb{C}$ we put $z_j = \rho_j e^{i\theta_j}$, with $|z_j| = \rho_j$. On the set of points $[z] \in M$ with $z_i \neq 0$ for all *i* one can consider the coordinates

$$\left(\frac{\rho_1^2}{2}, \varphi_1, \frac{\rho_2^2}{2}, \varphi_2, \frac{\rho_3^2}{2}, \varphi_3\right),\tag{3.3}$$

where the angle coordinates are defined by

$$\varphi_1 = \theta_1 - \theta_5, \qquad \varphi_2 = \theta_2 - \theta_5, \qquad \varphi_3 = \theta_3 - \theta_4 - \theta_5. \tag{3.4}$$

Then the standard symplectic structure on \mathbb{C}^5 induces the following form ω on this part of M

$$\omega = \sum_{j=1}^{3} d\left(\frac{\rho_j^2}{2}\right) \wedge d\varphi_j.$$
(3.5)

3.1. Darboux coordinates on M

Let $0 < \epsilon << 1$, we write

$$B_0 = \{ [z] \in M : |z_j| > \epsilon, \text{ for all } j \}.$$

For each $j \in \{1, 2, 3, 4, 5\}$ we set

$$B_i = \{[z] \in M : |z_i| < 2\epsilon \text{ and } |z_i| > \epsilon, \text{ for all } i \neq j\}.$$

The family B_0, \ldots, B_5 is not a covering of M, but if $[z] \notin \bigcup B_k$, then there are i, j, with $i \neq j$ and $|z_i| \leq \epsilon \geq |z_j|$.

We will define Darboux coordinates on B_0, \ldots, B_5 . On B_0 we will consider the well-defined Darboux coordinates (3.3).

On B_1 , $\rho_j \neq 0$ for $j \neq 1$; so the angle coordinates φ_2 and φ_3 of (3.4) are well-defined. We define x_1, y_1 by the relation $x_1 + iy_1 := \rho_1 e^{i\varphi_1}$ and $x_1 = 0 = y_1$, if $z_1 = 0$. In this way we take as symplectic coordinates on B_1

$$\left(x_1, y_1, \frac{\rho_2^2}{2}, \varphi_2, \frac{\rho_3^2}{2}, \varphi_3\right).$$

We will also consider the following Darboux coordinates: On B_2

$$\left(\frac{\rho_1^2}{2}, \varphi_1, x_2, y_2, \frac{\rho_3^2}{2}, \varphi_3\right)$$
, with $x_2 + iy_2 := \rho_2 e^{i\varphi_2}$; and $x_2 = 0 = y_2$, if $z_2 = 0$.

On B_3

$$\left(\frac{\rho_1^2}{2}, \varphi_1, \frac{\rho_2^2}{2}, \varphi_2, x_3, y_3\right)$$
, where $x_3 + iy_3 := \rho_3 e^{i\varphi_3}$.

On B_4

$$\left(\frac{\rho_1^2}{2}, \varphi_1, \frac{\rho_2^2}{2}, \varphi_2, x_4, y_4\right)$$
, with $x_4 + iy_4 := \rho_4 e^{i\varphi_4}$ and $\varphi_4 = \theta_4 - \theta_3 + \theta_5$.

On B_5

$$\left(x_5, y_5, \frac{\rho_2^2}{2}, \chi_2, \frac{\rho_3^2}{2}, \chi_3\right),$$

where

$$x_5 + iy_5 := \rho_5 e^{i\chi_5}, \qquad \chi_2 = \theta_2 - \theta_1, \qquad \chi_3 = \theta_3 - \theta_1 - \theta_4, \qquad \chi_5 = \theta_5 - \theta_1.$$

If $[z_1, \ldots, z_5]$ is a point of

$$M\setminus \bigcup_{i=0}^5 B_i,$$

then there are $a \neq b \in \{1, ..., 5\}$ such that $|z_a|, |z_b| \leq \epsilon$. We can cover the set $M \setminus \bigcup B_i$ by Darboux charts denoted $B_6, ..., B_q$ similar to the preceding B_i 's satisfying the following condition. The image of each B_a , with a = 6, ..., q, is contained in a prism of \mathbb{R}^6 of the form

$$\prod_{i=1}^{6} [c_i, d_i],$$

where at least two intervals $[c_i, d_i]$ have length of order ϵ .

By the infinitesimal "size" of the B_j , for $j \ge 1$, it turns out

$$\int_{B_j} \omega^3 = O(\epsilon), \quad \text{for } j \ge 1.$$
(3.6)

3.2. A loop in Ham(M)

Let ψ_t be the symplectomorphism of *M* defined by

$$\psi_t[z] = [z_1 e^{2\pi i t}, z_2, z_3, z_4, z_5]. \tag{3.7}$$

Then $\{\psi_t\}_t$ is a loop in the group $\operatorname{Ham}(M)$ of Hamiltonian symplectomorphisms of M. By f is denoted the corresponding normalized Hamiltonian function. Hence $f = \pi \rho_1^2 - \kappa$ with $\kappa \in \mathbb{R}$ such that $\int_M f \omega^3 = 0$.

We will calculate I_{ψ} using the following result proved in [28] (Theorem 3 of [28]).

Theorem 7. Let ψ : $S^1 \rightarrow \text{Ham}(M, \omega)$ be a closed Hamiltonian isotopy generated by the normalized timedependent Hamiltonian f_t . If $\{B_1, \ldots, B_m\}$ is a set of symplectic trivializations for TM which covers M and such that $\psi_t(B_j) = B_j$, for all t and all j, then

$$I_{\psi} = \sum_{i=1}^{m} J_i \int_{B_i \setminus \bigcup_{j < i} B_j} \omega^n + \sum_{i < k} N_{ik}, \qquad (3.8)$$

where

$$N_{ik} = n \frac{\mathrm{i}}{2\pi} \int_{S^1} \mathrm{d}t \int_{A_{ik}} (f_t \circ \psi_t) (\mathrm{d}\log r_{ik}) \wedge \omega^{n-1},$$

 $A_{ik} = (\partial B_i \setminus \bigcup_{r < k} B_r) \cap B_k$, J_i is the Maslov index of $(\psi_t)_*$ in the trivialization B_i and r_{ik} the corresponding transition function of det(TM).

We will prove that, in the case we are considering, some summands in (3.8) are of order ϵ . We will neglect the order ϵ summands, and in this way we will obtain an expression which is equal to I_{ψ} up to an addend of order ϵ .

In the coordinates (3.3) of B_0 , ψ_t is the map $\varphi_1 \mapsto \varphi_1 + 2\pi t$. So the Maslov index $J_{B_0} = 0$. It follows from (3.6) and Theorem 7

$$I_{\psi} = \sum_{i < k} N_{ik} + O(\epsilon), \tag{3.9}$$

with

$$N_{ik} = \frac{3\mathrm{i}}{2\pi} \int_{A_{ik}} f \mathrm{d} \log r_{ik} \wedge \omega^2.$$

If $[z] \in A_{ik} \subset \partial B_i \cap B_k$, with $1 \le i < k$, then at least the modules $|z_a|$ and $|z_b|$ of two components of [z] are of order ϵ ; so N_{ik} is of order ϵ when $1 \le i < k$. Analogously N_{0k} is of order ϵ , for $k = 6, \ldots, q$. Hence (3.9) reduces to

$$I_{\psi} = \sum_{k=1}^{5} N_{0k} + O(\epsilon).$$
(3.10)

If we put

$$N'_{0k} = \frac{3i}{2\pi} \int_{A'_{0k}} f d\log r_{ik} \wedge \omega^2,$$
(3.11)

with

 $A'_{0k} = \{ [z] \in M : |z_k| = \epsilon, |z_r| > \epsilon \text{ for all } r \neq k \},\$

then

$$N_{0k} = N'_{0k} + O(\epsilon)$$

and

$$I_{\psi} = \sum_{k=1}^{5} N'_{0k} + O(\epsilon).$$
(3.12)

3.3. Calculation of the N'_{0k} 's

First we determine the value of N'_{01} . To know the transition function r_{01} one needs the Jacobian matrix R of the transformation

$$\left(x_1, y_1, \frac{\rho_2^2}{2}, \varphi_2, \frac{\rho_3^2}{2}, \varphi_3\right) \to \left(\frac{\rho_1^2}{2}, \varphi_1, \frac{\rho_2^2}{2}, \varphi_2, \frac{\rho_3^2}{2}, \varphi_3\right)$$

in the points of A'_{01} ; where $\rho_1^2 = x_1^2 + y_1^2$, $\varphi_1 = \tan^{-1}(y_1/x_1)$. The function $r_{01} = \rho(R)$, where $\rho : Sp(6, \mathbb{R}) \to U(1)$ is the map which restricts to the determinant on U(3) [26]. The non-trivial block of R is the diagonal one

$$\begin{pmatrix} x_1 & y_1 \\ r & s \end{pmatrix},$$

with $r = -y_1(x_1^2 + y_1^2)^{-1}$ and $s = x_1(x_1^2 + y_1^2)^{-1}$. The non-real eigenvalues of *R* are

$$\lambda_{\pm} = \frac{x_1 + s}{2} \pm \frac{i\sqrt{4 - (s + x_1)^2}}{2}.$$

These non-real eigenvalues occur when $(s + x_1)^2 < 2$. On A'_{01} this condition is equivalent to $|\cos \varphi_1| < 2\epsilon(\epsilon^2 + \epsilon^2)$ 1)⁻¹ =: δ , since $\rho_1 = \epsilon$ for the points of A'_{01} . If $y_1 > 0$ then λ_- of the first kind (see [26]) and λ_+ is of the first kind if $y_1 < 0$. Hence, on A'_{01} ,

$$\rho(R) = \begin{cases} \lambda_{+} |\lambda_{+}|^{-1} = x + iy, & \text{if } |\cos \varphi_{1}| < \delta \text{ and } y_{1} < 0; \\ \lambda_{-} |\lambda_{-}|^{-1} = x - iy, & \text{if } |\cos \varphi_{1}| < \delta \text{ and } y_{1} > 0; \\ \pm 1, & \text{otherwise;} \end{cases}$$

where $x = \delta^{-1} \cos \varphi_1$, and $y = \sqrt{1 - x^2}$.

If we put $\rho(R) = e^{i\gamma}$ then, for the points of A'_{01} in which $|\cos \varphi_1| < \delta$,

$$\cos \gamma = \delta^{-1} \cos \varphi_1, \quad \text{and} \quad \sin \gamma = \begin{cases} -\sqrt{1 - \cos^2 \gamma}, & \text{if } \sin \varphi_1 > 0; \\ \sqrt{1 - \cos^2 \gamma}, & \text{if } \sin \varphi_1 < 0. \end{cases}$$

So, when φ_1 runs anticlockwise from 0 to 2π , γ goes round the circumference clockwise; that is, $\gamma = h(\varphi_1)$, where *h* is a function such that

$$h(0) = 2\pi$$
, and $h(2\pi) = 0.$ (3.13)

As $r_{01} = \rho(R)$, then d log $r_{01} = idh$.

On A'_{01} the symplectic form (3.5) reduces to $(1/2)(d\rho_2^2 \wedge d\varphi_2 + d\rho_3^2 \wedge d\varphi_3)$. From (3.11) one deduces

$$N_{01}' = \frac{3i}{4\pi} \int_{A_{01}'} if \frac{\partial h}{\partial \varphi_1} d\varphi_1 \wedge d\rho_2^2 \wedge d\varphi_2 \wedge d\rho_3^2 \wedge d\varphi_3.$$
(3.14)

The submanifold A'_{01} is oriented as a subset of ∂B_0 and the orientation of B_0 is the one defined by ω^3 , that is, by

$$\mathrm{d}
ho_1^2 \wedge \mathrm{d} \varphi_1 \wedge \mathrm{d}
ho_2^2 \wedge \mathrm{d} \varphi_2 \wedge \mathrm{d}
ho_3^2 \wedge \mathrm{d} \varphi_3.$$

Since $\rho_1 > \epsilon$ for the points of B_0 , then A'_{01} is oriented by $-d\varphi_1 \wedge d\varphi_2^2 \wedge d\varphi_2 \wedge d\varphi_3^2 \wedge d\varphi_3$. On the other hand, the Hamiltonian function $f = -\kappa + O(\epsilon)$ on A'_{01} . Then it follows from (3.14) together with (3.13)

$$N'_{01} = 6\pi^2 \kappa \int_0^{\sigma/\pi} d\rho_3^2 \int_0^{\tau/\pi - \rho_3^2} d\rho_2^2 + O(\epsilon)$$

that is,

$$N'_{01} = 3\kappa(\tau^2 - \lambda^2) + O(\epsilon).$$
(3.15)

The contributions N'_{02} , N'_{03} , N'_{04} , N'_{05} to (3.12) can be calculated in a similar way. One obtains the following results up to addends of order ϵ

$$N'_{02} = N'_{05} = -(\tau^3 - \lambda^3) + 3\kappa(\tau^2 - \lambda^2), \qquad N'_{03} = \tau^2(3\kappa - \tau), \qquad N'_{04} = \lambda^2(3\kappa - \lambda).$$
(3.16)

As I_{ψ} is independent of ϵ , it follows from (3.12), (3.15) and (3.16)

$$I_{\psi} = 6\kappa (2\tau^2 - \lambda^2) + \lambda^3 - 3\tau^3.$$
(3.17)

On the other hand, straightforward calculations give

$$\int_{M} \omega^{3} = (\tau^{3} - \lambda^{3}), \text{ and } \int_{M} \pi \rho_{1}^{2} \omega^{3} = \frac{1}{4} (\tau^{4} - \lambda^{4}).$$

So

$$\kappa = \frac{1}{4} \left(\frac{\tau^4 - \lambda^4}{\tau^3 - \lambda^3} \right). \tag{3.18}$$

It follows from (3.17) and (3.18)

$$I_{\psi} = \frac{\lambda^2 (-3\tau^4 + 8\tau^3\lambda - 6\tau^2\lambda^2 + \lambda^4)}{2(\tau^3 - \lambda^3)}.$$
(3.19)

Hence I_{ψ} is a rational function of τ and λ . It is easy to check that its numerator does not vanish for $0 < \lambda < \tau$. So we have proved the following proposition.

Proposition 8. If ψ is the closed Hamiltonian isotopy defined in (3.7), then the characteristic number $I_{\psi} \neq 0$.

Proof of Corollary 2. By Proposition 8 $I_{\psi} \neq 0$. As *I* is a group homomorphism on $\pi_1(\text{Ham}(M, \omega))$, then the class $[\psi^l] \in \pi_1(\text{Ham}(M, \omega))$ does not vanish, for all $l \in \mathbb{Z} \setminus \{0\}$. \Box

4. Hamiltonian group of toric manifolds

In this section we generalize the calculations carried out in Section 3 for the 6-manifold one point blow up of $\mathbb{C}P^3$ to a general toric manifold. Now (M, ω) will denote the toric manifold defined by (1.3) and (1.4).

When $0 \neq z_b \in \mathbb{C}$, we write $z_b = \rho_b e^{i\theta_b}$. The standard symplectic form on \mathbb{C}^m gives rise to the symplectic structure ω on M. On

$$\{[z] \in M : z_j \neq 0 \text{ for all } j\}$$

 ω can be written as in (3.5)

$$\omega = \sum_{i=1}^{n} d\left(\frac{\rho_{ai}^2}{2}\right) \wedge d\varphi_{ai},$$

with φ_{ai} a linear combination of the θ_c 's.

Given $0 < \epsilon << 1$, we set

$$B_0 = \{ [z] \in M : |z_j| > \epsilon \text{ for all } j \}$$

$$B_k = \{ [z] \in M : |z_k| < 2\epsilon, |z_j| > \epsilon \text{ for all } j \neq k \},$$

as in Section 3. On B_0 we will consider the Darboux coordinates

$$\left\{\frac{\rho_{ai}^2}{2},\varphi_{ai}\right\}_{i=1,\dots,n}$$

Given $k \in \{1, \ldots, m\}$ we write ω in the form

•

$$\omega = d\left(\frac{\rho_k^2}{2}\right) \wedge d\varphi_k + \sum_{i=1}^{n-1} d\left(\frac{\rho_{ki}^2}{2}\right) \wedge d\varphi_{ki}$$

where φ_k and φ_{ki} are linear combinations of the θ_c 's. Then we consider on B_k the following Darboux coordinates

$$\left\{x_{k}, y_{k}, \frac{\rho_{ki}^{2}}{2}, \varphi_{ki}\right\}_{i=1,\dots,n-1}$$

with x_k , y_k defined by $x_k + iy_k := \rho_k e^{i\varphi_k}$, if $z_k \neq 0$ and $x_k = 0 = y_k$, if $z_k = 0$.

We denote by ψ_t the map

$$\psi_t: [z] \in M \mapsto [z_1 e^{2\pi i t}, z_2, \dots, z_m] \in M.$$

 $\{\psi_t : t \in [0, 1]\}$ is a loop in Ham(M). By repeating the arguments of Section 3 one obtains

$$I_{\psi} = \sum_{k=1}^{m} N'_{0k} + O(\epsilon),$$

where

$$N_{0k}' = \frac{n\mathbf{i}}{2\pi} \int_{A_{0k}'} f \mathrm{d} \log r_{0k} \wedge \omega^{n-1},$$

$$A_{0k}' = \{[z] \in M : |z_k| = \epsilon, |z_j| > \epsilon \text{ for all } j \neq k\},$$

and $f = \pi \rho_1^2 - \kappa_1$, with

$$\int_M \pi \rho_1^2 \omega^n = \kappa_1 \int_M \omega^n.$$

As in Section 3, on A'_{0k} the exterior derivative $d \log r_{0k} = ih'(\varphi_k)d\varphi_k$, where $h = h(\varphi_k)$ is a function such that $h(0) = 2\pi, h(2\pi) = 0$. Then

$$N'_{0k} = -n \int_{\{[z]: z_k = 0\}} f \omega^{n-1} + O(\epsilon),$$

where $\{[z] \in M : z_k = 0\}$ is oriented by the restriction of ω to this submanifold. Since I_{ψ} is independent of ϵ , we obtain

$$I_{\psi} = -n \sum_{k=1}^{m} \left(\int_{\{[z]: z_k = 0\}} (\pi \rho_1^2 - \kappa_1) \omega^{n-1} \right).$$
(4.1)

For $j = 1, \ldots, m$ we write

$$\alpha_j := \sum_{k=1}^m \left(\int_{\{[z]: z_k = 0\}} (\pi \rho_j^2 - \kappa_j) \omega^{n-1} \right), \tag{4.2}$$

where κ_i is defined by the condition

$$\int_M \pi \rho_j^2 \omega^n = \kappa_j \int_M \omega^n.$$

Proof of Theorem 3. Let us assume that $\alpha_1, \ldots, \alpha_p$ are linearly independent over \mathbb{Z} . For $j = 1, \ldots, p$ we put

 ${}^{j}\psi_{t}:[z]\in M\mapsto [z_{1},\ldots,z_{j}e^{2\pi it},\ldots,z_{m}]\in M.$

Given $q = (q_1, \ldots, q_p) \in \mathbb{Z}^p$ we denote by ψ^q the path product

$$({}^{1}\psi)^{q_1}\star\cdots\star({}^{p}\psi)^{q_p}.$$

Formula (4.1) together with the fact that I is a group homomorphism give

$$I_{\psi^q} = -n \sum_{i=1}^p q_i \alpha_i.$$

Analogously if $q' = (q'_1, \ldots, q'_p) \in \mathbb{Z}^p$, then $I_{\psi^{q'}} = -n \sum_{i=1}^p q'_i \alpha_i$. By the linear independence of $\alpha_1, \ldots, \alpha_p$ from $I_{\psi^{q'}} = I_{\psi^q}$ it follows q = q'. So ψ^q is homotopic to $\psi^{q'}$ iff q = q'. \Box

Example. We will check the above result calculating the family $\{\alpha_j\}$ defined in (4.2) in two particular cases: when the manifold is $\mathbb{C}P^1$ and when it is $\mathbb{C}P^2$.

For

$$M = \mathbb{C}P^{1} = \{(z_{1}, z_{2}) \in \mathbb{C}^{2} : |z_{1}|^{2} + |z_{2}|^{2} = \tau/\pi\}/S^{1}$$

we have

$$\int_M \pi \rho_1^2 \omega = \tau^2/2, \qquad \int_M \omega = \tau.$$

Thus $\kappa_1 = \tau/2$ and $\alpha_1 = -\kappa_1 + \tau - \kappa_1 = 0$. Similarly $\alpha_2 = 0$. In this case the number *p* in Theorem 3 is 0. This is compatible with the fact that $\pi_1(\text{Ham}(\mathbb{C}P^1)) = \mathbb{Z}/2\mathbb{Z}$.

For

$$M = \mathbb{C}P^{2} = \{(z_{1}, z_{2}, z_{3}) \in \mathbb{C}^{3} : |z_{1}|^{2} + |z_{2}|^{2} + |z_{3}|^{2} = \tau/\pi\}/S^{1},$$

we have the following values for the integrals involved in the definition of α_1

$$\int_M \omega^2 = \tau^2, \qquad \int_M \pi \rho_1^2 \omega^2 = \tau^3/3.$$

So $\kappa_1 = \tau/3$. Moreover for $k \in \{1, 2, 3\}$

$$\int_{\{[z]:z_k=0\}}\omega=\tau.$$

On the other hand, for k = 2, 3

$$\int_{\{[z]:z_k=0\}} \pi \rho_1^2 \omega = \tau^2/2.$$

So $\alpha_1 = -\kappa_1 \tau + (\tau^2/2 - \kappa_1 \tau) + (\tau^2/2 - \kappa_1 \tau) = 0$. Analogously $\alpha_2 = \alpha_3 = 0$, so p in Theorem 3 is also 0. This result is consistent with the finiteness of $\pi_1(\text{Ham}(\mathbb{C}P^2))$, for $\text{Ham}(\mathbb{C}P^2)$ has the homotopy type of PU(3) [9].

Remark. On the manifold M one point blow up of $\mathbb{C}P^3$, defined by (3.1) and (3.2), one can consider the loop $\tilde{\psi}$ defined by

$$\tilde{\psi}_t[z] = [z_1, z_2, z_3 e^{2\pi i t}, z_4, z_5].$$
(4.3)

A similar calculation to the one carried out in the proof of (3.19) shows that $I_{\tilde{\psi}} = -3I_{\psi}$.

In the definition of M the variables z_1 , z_2 , z_5 play the same role. However we can consider the following S¹-action on M

$$\hat{\psi}_t[z] = [z_1, z_2, z_3, z_4 e^{2\pi i t}, z_5], \tag{4.4}$$

and it turns out that $I_{\hat{\psi}} = 3I_{\psi}$. Thus Theorem 3 guaranties that only \mathbb{Z} is contained in $\pi_1(\text{Ham}(M))$.

Let (M, ω) be the toric manifold determined by the Delzant polytope $\Delta \subset \mathfrak{t}^*$, where T is an n-dimensional torus. Next we give a formula for the value of I on the Hamiltonian loops generated by the effective action of T on M, in which are involved geometrical magnitudes relative to Δ and the generator of the loop.

By $\mu: M \to \mathfrak{t}^*$ is denoted the moment map for the *T*-action. Let **b** be an element of the integer lattice of \mathfrak{t} , and let $\psi_{\mathbf{b}}$ the S¹-action determined by **b**. The corresponding normalized Hamiltonian function is $f = \langle \mu, \mathbf{b} \rangle - \kappa$, with

$$\int_M \langle \mu, \mathbf{b} \rangle \omega^n = \kappa \int_M \omega^n.$$

Since

$$\int_M \mu \omega^n = \operatorname{Cm}(\varDelta) \int_M \omega^n,$$

where $C m(\Delta)$ is the center of mass of Δ , it follows $\kappa = \langle C m(\Delta), \mathbf{b} \rangle$.

According to (4.1)

$$I_{\psi_{\mathbf{b}}} = -n \sum_{k=1}^{m} \int_{D_{k}} \left(\langle \mu, \mathbf{b} \rangle - \langle \operatorname{C} \operatorname{m}(\varDelta), \mathbf{b} \rangle \right) \omega^{n-1},$$

where $D_k := \mu^{-1}(F_k)$, and F_1, \ldots, F_m are the facets of Δ . We define $C m(D_k)$ by the relation

$$\operatorname{Cm}(D_k)\int_{D_k}\omega^{n-1}=\int_{D_k}\mu\omega^{n-1},$$

and

$$\operatorname{Vol}(D_k) := \frac{1}{(n-1)!} \frac{1}{(2\pi)^{n-1}} \int_{D_k} \omega^{n-1}$$

Then

$$I_{\psi_{\mathbf{b}}} = n! (2\pi)^{n-1} \sum_{k=1}^{m} \langle \operatorname{C} \operatorname{m}(\varDelta) - \operatorname{C} \operatorname{m}(D_k), \mathbf{b} \rangle \operatorname{Vol}(D_k).$$

Thus we have the following proposition.

956

(4.5)

$$\sum_{k=1}^{m} \langle \operatorname{C} \operatorname{m}(\Delta) - \operatorname{C} \operatorname{m}(D_k), \mathbf{b} \rangle \operatorname{Vol}(D_k) \neq 0$$

then **b** generates an element of infinite order in the group $\pi_1(\text{Ham}(M, \omega))$.

5. Hamiltonian G-actions

Let G be a compact Lie group and $\phi : G \to \text{Ham}(M, \omega)$ a Hamiltonian G-action on M. The group homomorphism ϕ induces a map

$$\Phi: BG \to B\operatorname{Ham}(M, \omega)$$

between the corresponding classifying spaces.

On the other hand, one has the universal bundle with fibre M

$$M \longrightarrow M_H := E \operatorname{Ham}(M) \times_{\operatorname{Ham}(M)} M$$

$$\downarrow^{\pi_H}$$

$$B \operatorname{Ham}(M),$$

where $E\text{Ham}(M) \rightarrow B\text{Ham}(M)$ is the universal principal bundle of the group $H := \text{Ham}(M, \omega)$.

The pullback $\Phi^{-1}(M_H)$ of M_H by Φ is a bundle on *BG* which can be identified with $p: M_{\phi} := EG \times_G M \rightarrow BG$. Thus we have the following commutative diagram

$$\begin{array}{c} M_{\phi} \xrightarrow{\Phi'} M_{H} \\ p \\ \downarrow & \downarrow \pi_{H} \\ BG \xrightarrow{\Phi} BH. \end{array}$$

There exists a unique class $\mathbf{c} \in H^2(M_H, \mathbb{R})$ [14] called the coupling, such that \mathbf{c} extends the fiberwise class $[\omega]$ and $\pi_{H_*} \mathbf{c}^{n+1} = 0$ (where π_{H_*} is the fiber integration). We put c_{ϕ} for the pullback of \mathbf{c} by Φ' ; that is, $c_{\phi} = \Phi'^*(\mathbf{c}) \in H^2(M_{\phi}, \mathbb{R})$. Since

$$p_*(c_{\phi}^{n+1}) = \Phi^*(\pi_{H_*}\mathbf{c}^{n+1}) = 0,$$

 c_{ϕ} is the coupling class of the Hamiltonian fibration $M_{\phi} \rightarrow BG$ [21].

We can also consider the vector bundle

$$(TM)_{\phi} := EG \times_G TM \to M_{\phi}.$$

The first Chern class $c_1((TM)_{\phi})$ is the G-equivariant first Chern class of TM, and it will be denoted by c_1^{ϕ} .

By Hom(G, Ham(M)) is denoted the set of all Lie group homomorphisms ϕ from G to Ham(M, ω). In Hom(G, Ham(M)) one defines the following equivalence relation:

 $\phi \simeq \tilde{\phi}$ iff there is a continuous family $\{\phi^s : G \to \operatorname{Ham}(M)\}_{s \in [0,1]}$ of Lie group homomorphisms, such that $\phi^0 = \phi$ and $\phi^1 = \tilde{\phi}$; that is, iff ϕ and $\tilde{\phi}$ are homotopic by a family of *group homomorphisms*. We denote by $[G, \operatorname{Ham}(M)]_{gh}$ the corresponding quotient set. This space is just a set of connected components of the space of homomorphisms from *G* to $\operatorname{Ham}(M, \omega)$.

If $\phi \simeq \tilde{\phi}$, then the bundles $\tilde{\Phi}^{-1}(M_H)$ and $\Phi^{-1}(M_H)$ are isomorphic. Moreover the isomorphism $M_{\phi} \to M_{\tilde{\phi}}$

applies $c_{\tilde{\phi}}$ in c_{ϕ} and $c_1^{\tilde{\phi}}$ in c_1^{ϕ} . For $j = 0, 1, \dots, n$ we put

$$\beta_j(\phi) := \left(c_1^{\phi}\right)^j \left(c_{\phi}\right)^{n-j} \in H^{2n}(M_{\phi}, \mathbb{R}).$$

We write $R_i(\phi) := p_*(\beta_i(\phi)) \in H^0(BG)$. By the localization formula in *G*-equivariant cohomology [5,13]

$$R_i(\phi) = \sum_Z p_*^Z \left(\frac{\beta|_Z}{e_Z}\right),\tag{5.1}$$

where Z varies in the set of connected components of the fixed point set, $p_*^Z : H_G(Z) \to H(BG)$ is the fiber integration on Z, and e_Z is the equivariant Euler class of the normal bundle to Z in M.

From the preceding arguments it follows the following theorem.

Theorem 10. Given ϕ and $\tilde{\phi}$ two Hamiltonian *G*-actions on *M*, if there are $j \in \{0, 1, ..., n\}$ and $X \in \mathfrak{g}$ such that $R_j(\phi)(X) \neq R_j(\tilde{\phi})(X)$, then $[\phi] \neq [\tilde{\phi}] \in [G, \operatorname{Ham}(M)]_{gh}$.

If $\hat{\omega} \in H^2(M_{\phi}, \mathbb{R})$ is an element which restricts to the class of the symplectic form on the fiber in the fibration $p: M_{\phi} \to BG$, then

$$c_{\phi} = \hat{\omega} - \frac{1}{k} p^*(p_*(\hat{\omega}^{n+1})),$$

where the constant $k = (n + 1) \int_M \omega^n$ (see [14]). In particular, if G = U(1) we denote by f the normalized Hamiltonian function; that is, $\iota_Y \omega = -df$ and $\int_M f \omega^n = 0$, where Y the vector field on M generated by ϕ . Then c_{ϕ} is the class in $H^2(M_{\phi})$ defined by the U(1)-equivariant 2-form $\omega + f u$, where u is a coordinate on the Lie algebra u(1) dual of a fixed base X of u(1) (see [16,13]).

When G = U(1) a representative of $c_1^{\phi}(\det(TM))$ can be constructed following [3] or [5]. Let *s* be a local section of det(*TM*) over the open *V*. The infinitesimal action of *X* on the section *s* is the section *Xs* defined in (1.11). *Xs* is a section which can be written as the product $L \cdot s$, of a function *L* on *V* and *s*. If α is the form relative to *s* of an equivariant connection on det(*TM*), and *X_M* is the Hamiltonian vector field on *M* defined in (1.9), then

$$\frac{-1}{2\pi i} \left(\mathrm{d}\alpha + (L - \iota_{X_M} \alpha) u \right), \tag{5.2}$$

is a representative of $c_1^{\phi}(\det(TM))$ on V. So a representative of $\beta_1 = c_1^{\phi}(TM)c_{\phi}^{n-1}$ on V is

$$\frac{-1}{2\pi i} \left(\mathrm{d}\alpha + (L - \iota_{X_M} \alpha) u \right) \wedge (\omega + f u)^{n-1}.$$
(5.3)

On the other hand, if G = U(1) and $\mu : M \to \mathfrak{u}(1)^*$ is the normalized moment map, $\mathcal{R}_{\phi}(Z)$ defined in (1.6) is equal to

$$\mathcal{R}_{\phi}(Z) = \left(\frac{1}{2\pi i}\right)^n \int_M e^{ic_{\phi}(Z)},\tag{5.4}$$

for any $Z \in \mathfrak{g}$. So Theorem 10 is applicable to \mathcal{R} .

5.1. Flag manifolds

Let $\eta \in \mathfrak{g}^*$ be a regular element; that is, the stabilizer G_η of η for the coadjoint action of G is a maximal torus T. By \mathcal{O} is denoted the coadjoint orbit of η , endowed with the Kirillov symplectic structure ω . The G-action on \mathcal{O} is Hamiltonian and the inclusion map $\mu : \mathcal{O} \to \mathfrak{g}^*$ is a moment map for this action. The Fourier transform of the orbit \mathcal{O} is the function F defined on \mathfrak{g} by (see [5])

$$F(X) = \left(\frac{1}{2\pi i}\right)^n \int_{\mathcal{O}} e^{i(\mu(X) + \omega)},$$
(5.5)

where $X \in \mathfrak{g}$ and $n = (\dim \mathcal{O})/2$.

Let Y be a vector of \mathfrak{g} , by ϕ_t^Y we denote the isotopy defined in (1.10). If $\{\phi_t^Y\}_{t \in [0,1]}$ is a closed curve in Ham(\mathcal{O}), we have a Hamiltonian circle action $\phi^Y : U(1) \to \text{Ham}(\mathcal{O})$ and $\mu(Y)$ is a Hamiltonian function for this S¹-action. If

$$\kappa \coloneqq \left(\int_{\mathcal{O}} \mu(Y)\omega^n\right) \left(\int_{\mathcal{O}} \omega^n\right)^{-1},\tag{5.6}$$

then $f = \mu(Y) - \kappa$ is the normalized Hamiltonian which generates the U(1)-action.

958

On the other hand, one deduces from (5.5)

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0}F(tY) = \left(\frac{1}{2\pi}\right)^n \frac{\mathrm{i}}{n!} \int_{\mathcal{O}} \mu(Y)\omega^n.$$
(5.7)

It follows from (5.6) and (5.7) the following formula for the constant κ

$$\kappa = \frac{-i}{\operatorname{Vol}(\mathcal{O})} \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} F(tY),\tag{5.8}$$

where the symplectic volume is

$$\operatorname{Vol}(\mathcal{O}) = \frac{1}{(2\pi)^n} \frac{1}{n!} \int_{\mathcal{O}} \omega^n.$$

According to (5.4) and (5.8) we have the following proposition.

Proposition 11. Given $Y \in \mathfrak{g}$, if ϕ^Y is a loop in Ham(\mathcal{O}), then

$$\mathcal{R}_{\phi^{Y}}(Y) = \exp\left(-\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0}\log F(tY)\right)F(Y).$$
(5.9)

Let *W* be the Weyl group determined by the torus *T* and *X* an regular element of t. The Harish-Chandra theorem gives a formula for F(X) in terms of roots of t (see [5])

$$F(X) = \prod_{\eta(i\check{\alpha})>0} (\alpha(X))^{-1} \sum_{w \in W} \epsilon(w) e^{i(w \cdot \eta)(X)},$$
(5.10)

where $\epsilon(w)$ is the signature of the permutation $w \in W$. From (5.9) and (5.10) one deduces that $\mathcal{R}_{\phi^Y}(Y)$ can be calculated using the root structure defined by the pair (G, T).

Example. Let G = SU(2) and $\eta \in \mathfrak{su}(2)^*$ defined by

$$\eta: \begin{pmatrix} b\mathbf{i} & z\\ -\bar{z} & -b\mathbf{i} \end{pmatrix} \in \mathfrak{su}(2) \mapsto b \in \mathbb{R}.$$

The stabilizer of η is T = U(1), the coadjoint orbit \mathcal{O} is $\mathbb{C}P^1$ and the corresponding symplectic form is ω_{area} . The Weyl group W = N(T)/T, with N(T) the normalizer of T in SU(2), consists of the class of id and the class of

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}. \tag{5.11}$$

If $\alpha_1 = \epsilon_1 - \epsilon_2$ is the usual base of roots, then $\eta(i\check{\alpha}_1) = 1$. In this case the product in (5.10) has only one factor and the sum of two addends.

Let $Y = \text{diag}(\pi i, -\pi i)$, then the vector C_t in (2.3) for n = k = 1 is equal to tY. Thus ϕ^Y is the loop in Ham(\mathcal{O}) denoted by $_1\psi$ in Section 2. This loop defines the only nontrivial class of $\pi_1(\text{Ham}(\mathcal{O}))$ (see the paragraph before Theorem 5).

If w is the element of W defined by (5.11), then $wY = \text{diag}(-\pi i, \pi i)$, and $\eta(wY) = -\pi$. Furthermore $\alpha_1(Y) = 2\pi i$. It follows from (5.10)

$$F(Y) = \frac{1}{2\pi i} \left(e^{\pi i} - e^{-\pi i} \right) = 0.$$

By (5.9) $\mathcal{R}_{\phi^Y}(Y) = 0.$

In general, if $b \neq 0$ then for Z = bY,

$$F(Z) = \frac{\sin b\pi}{b\pi}.$$

The loop determined by 2*Y* defines the trivial class in $\pi_1(\text{Ham}(\mathcal{O}))$, and $\mathcal{R}_{\phi^{2Y}}(2Y) = 0$.

On the other hand,

$$\mathcal{R}_{\phi^0}(X) = \operatorname{Vol}(\mathcal{O}), \tag{5.12}$$

for any $0 \neq X \in \mathfrak{g}$. It follows from Theorem 10 and (5.12) the following proposition.

Proposition 12. The circle action on $(\mathbb{C}P^1, \omega_{\text{area}})$ defined by $\operatorname{diag}(2\pi i, -2\pi i) \in \mathfrak{su}(2)$ and the trivial one determine distinct elements in $[U(1), \operatorname{Ham}(\mathbb{C}P^1)]_{gh}$.

Proposition 12 gives an example of a pair of Hamiltonian circle actions on $(\mathbb{C}P^1, \omega_{area})$ which define the same element in π_1 (Ham) but they are not homotopic by a family of circle actions.

5.2. Hirzebruch surfaces

Next we determine the value $R_{\phi} := R_1(\phi)$ for three Hamiltonian actions on a Hirzebruch surface. We will define these actions using the fact that such a surface is a submanifold of $\mathbb{C}P^1 \times \mathbb{C}P^2$.

Given 3 numbers k, τ, σ , with $k \in \mathbb{Z}_{>0}$, $\tau, \sigma \in \mathbb{R}_{>0}$ and $k\sigma < \tau$, the triple (k, τ, σ) determine a Hirzebruch surface *M* (see [4]). This surface is the quotient

$$\{z \in \mathbb{C}^4 : k|z_1|^2 + |z_2|^2 + |z_4|^2 = \tau/\pi, |z_1|^2 + |z_3|^2 = \sigma/\pi\}/\mathbb{T},\$$

where the equivalence defined by $\mathbb{T} = (S^1)^2$ is given by

$$(a,b) \cdot (z_1, z_2, z_3, z_4) = (a^k b z_1, a z_2, b z_3, a z_4),$$

for $(a, b) \in (S^1)^2$.

The map

$$[z_1, z_2, z_3, z_4] \mapsto ([z_2 : z_4], [z_2^k z_3 : z_4^k z_3 : z_1])$$

allows us to represent *M* as a submanifold of $\mathbb{C}P^1 \times \mathbb{C}P^2$. On the other hand, the usual symplectic structures on $\mathbb{C}P^1$ and $\mathbb{C}P^2$ induce a symplectic form ω on *M*, and the following $(S^1)^2$ -action on $\mathbb{C}P^1 \times \mathbb{C}P^2$

$$(a, b)([u_0 : u_1], [x_0 : x_1 : x_2]) = ([au_0 : u_1], [a^k x_0 : x_1 : bx_2])$$

gives rise to a toric structure on M. The Delzant polytope associated to (M, ω) is the trapezoid in $(\mathbb{R}^2)^*$ whose not oblique edges have the lengths τ, σ , and $\lambda := \tau - k\sigma$ (see [10]). Moreover λ is the value that the symplectic form ω takes on $\{[z] \in M : z_3 = 0\}$, the exceptional divisor of M, when k = 1. And ω takes the value σ on the class of the fibre in the fibration $M \to \mathbb{C}P^1$.

Let ϕ_t be the diffeomorphism of *M* defined by

$$\phi_t[z_1, z_2, z_3, z_4] = [z_1 e^{2\pi i t}, z_2, z_3, z_4].$$
(5.13)

 $\phi = \{\phi_t : t \in [0, 1]\}$ is a loop of Hamiltonian symplectomorphisms of (M, ω) . The fixed point set is $Z = \{[z] \in M : z_1 = 0\}$; that is, $Z \simeq \mathbb{C}P^1$ is the section at infinity of $M \to \mathbb{C}P^1$ (see [4]).

On *M* we can consider the covering

$$U_1 = \{ [z] \in M : z_3 \neq 0 \neq z_4 \}, \qquad U_2 = \{ [z] \in M : z_1 \neq 0 \neq z_4 \}$$
$$U_3 = \{ [z] \in M : z_1 \neq 0 \neq z_2 \}, \qquad U_4 = \{ [z] \in M : z_2 \neq 0 \neq z_3 \}.$$

So $Z \cap U_j = \emptyset$, for j = 2, 3. On U_4 one defines the complex coordinates

$$w_0 := \frac{z_4}{z_2}, \qquad w'_0 := \frac{z_1}{z_3 z_2^k}.$$

In these coordinates

$$\phi_t(w_0, w'_0) = (w_0, w'_0 e^{2\pi i t}).$$
(5.14)

On U_1 we introduce the complex coordinates

$$w_1 := \frac{z_2}{z_4}, \qquad w_1' := \frac{z_1}{z_3 z_4^k}.$$
 (5.15)

Thus on $U_1 \cap U_4$ one has the following relation

$$\frac{\partial}{\partial w_1} \wedge \frac{\partial}{\partial w_1'} = -w_0^{k+2} \frac{\partial}{\partial w_0} \wedge \frac{\partial}{\partial w_0'}$$
(5.16)

between the sections of det(TM).

On $Z \cap U_4$ we have the complex coordinate w_0 and on $Z \cap U_1$ the coordinate w_1 , with $w_1 = w_0^{-1}$. By (5.16) the bundle det $(TM)|_Z$ is the one whose first Chern class is (k + 2); that is, det $(TM)|_Z = O(k + 2)$.

Let us consider the local section

$$s := \frac{\partial}{\partial w_0} \wedge \frac{\partial}{\partial w_0'}$$

of det(TM). We need to determine the corresponding function L which appears in (5.2). From (5.14) it follows

$$(\phi_t)_* \left(\frac{\partial}{\partial w_0}\right) = \frac{\partial}{\partial w_0}, \qquad (\phi_t)_* \left(\frac{\partial}{\partial w'_0}\right) = e^{2\pi i t} \frac{\partial}{\partial w'_0}, \tag{5.17}$$

then

$$(\phi_t)_*(s) = \mathrm{e}^{2\pi\mathrm{i}t}s.$$

Thus the above function L is the constant $2\pi i$.

On the other hand, the Hamiltonian vector field X_M which corresponds to $X = 2\pi i \in \mathfrak{u}(1)$ is

$$X_M = -2\pi \mathrm{i} w_0' \frac{\partial}{\partial w_0'}.$$

On $Z' := Z \setminus (\{w_0 = 0\} \cup \{w_1 = 0\})$ the class $\beta = c_1^{\phi}(TM)c_{\phi}$ is represented by the equivariant form

$$\left(\delta|_{Z'} - \frac{1}{2\pi i}(2\pi i - 0)u\right)(\omega|_{Z'} + f|_{Z'}u), \qquad (5.18)$$

where δ is a 2-form representing the ordinary first Chern class of det(*TM*).

The normalized Hamiltonian function is $f = \pi |z_1|^2 - \kappa$, with $\kappa \in \mathbb{R}$. So $f|_Z = -\kappa$. The constant κ is fixed by the normalization condition. An easy calculation gives

$$\kappa = \frac{\sigma}{3} \left(\frac{3\lambda + k\sigma}{2\lambda + k\sigma} \right). \tag{5.19}$$

Next we calculate the equivariant Euler class e_Z of the normal bundle N_Z to Z in M. Let q be a point of Z', then

$$T_q M = \mathbb{C} \frac{\partial}{\partial w'_0} \oplus T_q Z.$$

Since $\frac{\partial}{\partial w'_0}$ and $\frac{\partial}{\partial w'_1}$ are sections of N_Z on $Z \cap U_4$ and $Z \cap U_1$ respectively, such that

$$\frac{\partial}{\partial w_1'} = w_0^k \frac{\partial}{\partial w_0'},$$

we have $N_Z = \mathcal{O}(k)$.

We put $w'_0 = x + iy$ and on N_Z we consider the orientation defined by $\frac{\partial}{\partial w'_0}$. The vector field X_M at q = (x, y) is $X_M = 2\pi \left(y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}\right)$. So

$$\left[X_M, \frac{\partial}{\partial x}\right] = 2\pi \frac{\partial}{\partial y}, \qquad \left[X_M, \frac{\partial}{\partial y}\right] = -2\pi \frac{\partial}{\partial x}.$$

Then det^{1/2}($[X_M,]$) = 2π . If $c_1(\mathcal{O}(k))$ is represented in Z' by the 2-form χ , then the equivariant Euler class e_Z is represented by (see [5])

$$\chi + (-2\pi) \det^{-1/2}([X_M,])u = \chi - u.$$

It follows from (5.1) and (5.18) that

$$R_{\phi} = \int_{Z'} \frac{(\delta - u)(\omega - \kappa u)}{\chi - u} = \frac{-1}{u} \int_{Z'} (\delta - u)(\omega - \kappa u)(1 + \chi/u) = 2\kappa + \omega(Z).$$
(5.20)

A straightforward calculation gives $\int_Z \omega = \lambda + k\sigma$. It follows from this value together with (5.19) and (5.20)

$$R_{\phi} = \frac{6\lambda^2 + (9k+6)\lambda\sigma + (2k+3k^2)\sigma^2}{6\lambda + 3k\sigma}.$$
(5.21)

Given $0 \neq r \in \mathbb{Z}$ we can consider the loop ξ defined by

$$\xi_t[z] = [z_1 e^{2\pi r t_1}, z_2, z_3, z_4]$$

The fixed point set for this U(1)-action set is Z as well. The corresponding Hamiltonian action is rf. In this case the respective function L is $2\pi ri$, and now the equivariant Euler class of N_Z is $e_Z = c_1(\mathcal{O}(k)) - ru$. Hence

$$R_{\xi} = \frac{-1}{ru} \int_{Z'} (\delta - ru)(\omega - r\kappa u)(1 + \chi/(ru)) = R_{\phi}.$$
(5.22)

Next we shall determine $R_{\tilde{\phi}}$, where the U(1)-action $\tilde{\phi}_t$ is defined by

$$\tilde{\phi}_t[z] = [z_1, z_2 e^{2\pi t i}, z_3, z_4].$$
(5.23)

Now the fixed point set is $\tilde{Z} = \{[z] \in M : z_2 = 0\}$, it is the fibre over [0:1] of the fibration $M \to \mathbb{C}P^1$ and can be identified with

 $\mathbb{C}P^1 \simeq \{([0:1], [0:z_3:z_1])\} \subset \mathbb{C}P^1 \times \mathbb{C}P^2.$

The normalized Hamiltonian function is $\tilde{f} = \pi |z_2|^2 - \tilde{\kappa}$, with

$$\tilde{\kappa} = \frac{3\lambda^2 + 3k\lambda\sigma + k^2\sigma^2}{6\lambda + 3k\sigma}.$$
(5.24)

A calculation similar to the preceding one shows that

$$R_{\tilde{y}} = 2\tilde{\kappa} + \omega(\tilde{Z}). \tag{5.25}$$

Since $\int_{\tilde{Z}} \omega = \sigma$, it follows from (5.25) together with (5.24) that

$$R_{\tilde{\psi}} = \frac{6\lambda^2 + (6k+6)\lambda\sigma + (3k+2k^2)\sigma^2}{6\lambda + 3k\sigma}.$$
(5.26)

One can consider the Hamiltonian loop $\hat{\phi}_t$ defined by

$$\hat{\phi}_t[z] = [z_1, z_2, z_3 e^{2\pi i t}, z_4].$$
(5.27)

962

963

The corresponding fixed point set is $\hat{Z} = \{[z] : z_3 = 0\}$. The normalized Hamiltonian function \hat{f} is $\hat{f} = \pi |z_3|^2 - \hat{\kappa}$, with

$$\hat{\kappa} = \frac{3\lambda\sigma + 2k\sigma^2}{6\lambda + 3k\sigma}.$$
(5.28)

It is easy to prove that

$$R_{\hat{\phi}} = 2\hat{\kappa} + \omega(\hat{Z}),\tag{5.29}$$

and $\omega(\hat{Z}) = \lambda$.

We can state the following theorem.

Theorem 13. If ϕ_t , $\tilde{\phi}_t$ and $\hat{\phi}_t$ are the loops in Ham(M) defined by (5.13), (5.23) and (5.27) respectively, then

$$R_{\phi} = 2\kappa + \omega(Z), \qquad R_{\tilde{\phi}} = 2\tilde{\kappa} + \omega(\tilde{Z}), \qquad R_{\hat{\phi}} = 2\hat{\kappa} + \omega(\hat{Z}),$$

where Z, \tilde{Z} , and \hat{Z} are the respective fixed point sets and the constants κ , $\tilde{\kappa}$, and $\hat{\kappa}$ are given by (5.19), (5.24) and (5.28) respectively.

From (5.21) and (5.26) it follows

$$R_{\phi} - R_{\tilde{\phi}} = \frac{3k\lambda\sigma + k(k-1)\sigma^2}{6\lambda + 3k\sigma} > 0.$$
(5.30)

For $0 \neq r \in \mathbb{Z}$ we denote by ϕ_t^r the diffeomorphism of *M* composition

$$\overbrace{\phi_t \circ \cdots \circ \phi_t}^r$$

if r > 0, and the obvious composition when r < 0. By (5.22) one has $R_{\phi^r} = R_{\phi}$. From Theorem 10 together with (5.30) one deduces the following corollary.

Corollary 14. If r, r' are nonzero integers, then ϕ_t^r and $\tilde{\phi}_t^{r'}$ are loops in Ham(M) which are not homotopic by a homotopy consisting of Hamiltonian circle actions.

Finally we consider the 1-parameter subgroup ζ in Ham(M) defined by the toric structure and the inclusion

$$y \in S^1 \mapsto (y^l, y^l) \in (S^1)^2$$
,

where $l, \tilde{l} \in \mathbb{Z} \setminus \{0\}$. That is,

$$\zeta_t[z] = [z_1 e^{2\pi i l t}, z_2 e^{2\pi i l t}, z_3, z_4].$$
(5.31)

The fixed point set F of ζ is the singleton set $F = \{[z] \in M : z_1 = z_2 = 0\}$. This point belongs to U_1 ; and in the coordinates w_1, w'_1 (see (5.15)) on U_1

$$\zeta_t(w_1, w_1') = (w_1 e^{2\pi i l t}, w_1' e^{2\pi i \tilde{l} t}).$$

Hence

$$\zeta_{t*}\left(\frac{\partial}{\partial w_1}\wedge\frac{\partial}{\partial w_1'}\right) = \mathrm{e}^{2\pi\,\mathrm{i}(l+\tilde{l})t}\frac{\partial}{\partial w_1}\wedge\frac{\partial}{\partial w_1'},$$

and the corresponding function L is the constant $2\pi i(l + \tilde{l})$.

On the other hand, the corresponding Hamiltonian vector field Y_M is

,

$$Y_M = -2\pi i \left(l w_1 \frac{\partial}{\partial w_1} + \tilde{l} w_1' \frac{\partial}{\partial w_1'} \right)$$

which vanishes on F. The normalized Hamiltonian function defined by ζ is

 $l(\pi |z_1|^2 - \kappa) + \tilde{l}(\pi |z_2|^2 - \tilde{\kappa}).$

On F this Hamiltonian reduces to the constant $-(l\kappa + \tilde{l}\tilde{\kappa})$.

According to our conventions the U(1)-action on $\mathbb{C}\frac{\partial}{\partial w_1}$ has multiplicity -l, and the multiplicity on the space $\mathbb{C}\frac{\partial}{\partial w'_1}$ is $-\tilde{l}$, then the equivariant Euler class of the normal bundle to F in M is $e_F = l\tilde{l}u^2$. Thus by (5.1) and (5.3), $R_{\zeta} = (l+\tilde{l})(l\kappa+\tilde{l}\tilde{\kappa})(l\tilde{l})^{-1}$.

One can state the following proposition.

Proposition 15. Let l, \tilde{l} be nonzero integers, and ζ the 1-subgroup of Ham(M) defined by (5.31), then

$$R_{\zeta} = \frac{(l+\tilde{l})(l\kappa+\tilde{l}\tilde{\kappa})}{l\tilde{l}}$$

where the constants κ and $\tilde{\kappa}$ are given by (5.19) and by (5.24) respectively.

 R_{ζ} is a rational function in the variables l, \tilde{l} . Hence $R_{\zeta} = R_{\zeta^r}$, for any $r \in \mathbb{Z} \setminus \{0\}$. If $\mathbf{l} = (l, \tilde{l})$ and $\mathbf{l}' = (l', \tilde{l}')$ are two pairs of nonzero integers such that the corresponding 1-parameter subgroups $\zeta(\mathbf{l})$ and $\zeta(\mathbf{l}')$ satisfy $R_{\zeta(\mathbf{l})} \neq R_{\zeta(\mathbf{l}')}$, then, by Theorem 10, $\zeta(\mathbf{l})^r$ and $\zeta(\mathbf{l}')^s$ are not homotopic by a family of Hamiltonian S^1 -actions, whenever $r, s \in \mathbb{Z} \setminus \{0\}$.

When *M* is the Hirzebruch surface determined by the triple $(k = 1, \tau > 2, \sigma = 1)$, Abreu and McDuff proved in [2] that $\pi_1(\text{Ham}(M))$ is isomorphic to \mathbb{Z} . Thus we have the following corollary.

Corollary 16. Let *M* be the Hirzebruch surface defined by $(k = 1, \tau > 2, \sigma = 1)$. There are infinitely many pairs $(\zeta(\mathbf{l}), \zeta(\mathbf{l}'))$ of 1-parameter closed subgroups of Ham(*M*) such that $[\zeta(\mathbf{l})] = [\zeta(\mathbf{l}')] \in \pi_1(\text{Ham}(M))$, but

 $[\zeta(\mathbf{l})] \neq [\zeta(\mathbf{l}')] \in [U(1), \operatorname{Ham}(M)]_{gh}.$

Remark 1. Two Hamiltonian circle actions on M, ϕ and ϕ' are conjugate if there exists an element $h \in \text{Ham}(M)$, such that $h \cdot \phi_t \cdot h^{-1} = \phi'_t$ for all t. If ϕ and ϕ' are conjugate, let h_s be a path in Ham(M) from Id to h, then $h_s \cdot \phi \cdot h_s^{-1}$ defines a homotopy between ϕ and ϕ' , and $[\phi] = [\phi'] \in [U(1), \text{Ham}(M)]_{gh}$. By Corollary 16, there are infinitely many conjugacy classes of circle actions on the Hirzebruch surface considered in this corollary.

Remark 2. Although the characteristic R_1 allows us to distinguish infinitely many conjugacy classes of Hamiltonian circle actions in a Hirzebruch surface M, the situation is different for $U(1)^2$ -actions, as we show next.

Given $\mathbf{l} = (l, \tilde{l})$ a pair of nonzero integers, we define a $U(1)^2$ -action on M by

$$\xi_{st}[z] = [z_1 e^{2\pi i ls}, z_2 e^{2\pi i lt}, z_3, z_4].$$

The fixed point set is again the singleton F, and the equivariant Euler class $e_F = l\tilde{l}uv$, where u, v are coordinates on $u(1) \oplus u(1)$. According to the localization formula (5.1), $R_1(\xi)$ is a rational function of the variables $\check{u} := lu, \check{v} := \tilde{l}v$. The numerator is a homogeneous degree two polynomial $A_1\check{u}^2 + A_2\check{u}\check{v} + A_3\check{v}^2$, with A_j independent of \mathbf{l} ; and the denominator is $\check{u}\check{v}$. As $R_1(\xi) \in H^0(B(U(1)^2))$, then $A_1 = A_3 = 0$, and $R_1(\xi)$ is independent of \mathbf{l} . That is, R_1 is constant on $\{\xi(\mathbf{l})\}_{\mathbf{l}}$. But Karshon proved that the number of conjugacy classes of maximal tori in M is the smallest integer greater than or equal to $\frac{\lambda}{\sigma}$ (see [15]). That is, the characteristic number R_1 is not fine enough to analyze this case.

Acknowledgements

This work has been partially supported by Ministerio de Ciencia y Tecnología, grant MAT2003-09243-C02-00. I thank Dusa McDuff for her enlightening comments. I thank an anonymous referee for constructive comments and for having pointed out for me the references [18,15]. Remark 1 to Corollary 16 is really a comment of the referee.

References

- [1] M. Abreu, Topology of symplectomorphism group of $S^2 \times S^2$, Invent. Math. 131 (1998) 1–23.
- [2] M. Abreu, D. McDuff, Topology of symplectomorphism groups of rational ruled surfaces, J. Amer. Math. Soc. 13 (2000) 971–1009.

- [3] M.F. Atiyah, R. Bott, The moment map and equivariant cohomology, Topology 23 (1984) 1–28.
- [4] M. Audin, Torus Actions on Symplectic Manifolds, Birkhäuser, Basel, 2004.
- [5] N. Berline, E. Getzler, M. Vergne, Heat Kernels and Dirac Operators, Springer-Verlag, Berlin, 1991.
- [6] C.J. Earle, J. Eells, A fibre bundle description of Teichmüller theory, J. Differential Geom. 3 (1969) 19-43.
- [7] W. Fulton, J. Harris, Representation Theory, Springer-Verlag, New York, 1991.
- [8] R. Goodman, N.R. Wallach, Representations and Invariants of Classical Groups, Cambridge U.P., Cambridge, 1998.
- [9] M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307–347.
- [10] V. Guillemin, Moment Maps and Combinatorial Invariants of Hamiltonian T^n -Spaces, Birkhäuser, Boston, 1994.
- [11] V. Guillemin, L. Lerman, S. Sternberg, Symplectic Fibrations and Multiplicity Diagrams, Cambridge U.P., Cambridge, 1996.
- [12] V. Guillemin, S. Sternberg, Symplectic Techniques in Physics, Cambridge U.P., Cambridge, 1984.
- [13] V. Guillemin, S. Sternberg, Supersymmetry and Equivariant de Rham Theory, Springer-Verlag, Berlin, 1999.
- [14] T. Januszkiewicz, J. Kedra, Characteristic classes of smooth fibrations. ArXiv: math.SG/0209288.
- [15] Y. Karshon, Maximal tori in the symplectomorphism groups of Hirzebruch surfaces, Math. Res. Lett. 10 (2003) 125–132.
- [16] J. Kedra, D. McDuff, Homotopy properties of Hamiltonian group actions, Geom. Topol. 9 (2005) 121–162.
- [17] A.A. Kirilov, Elements of the Theory of Representations, Springer-Verlag, Berlin, 1976.
- [18] F. Lalonde, D. McDuff, L. Polterovich, On the flux conjectures, in: CRM Proceedings and Lecture Notes 15, Amer. Math. Soc., Providence, RI, 1998, pp. 69–85.
- [19] F. Lalonde, D. McDuff, L. Polterovich, Topological rigidity of Hamiltonian loops and quantum homology, Invent. Math. 135 (1999) 369-385.
- [20] D. McDuff, Lectures on groups of symplectomorphisms. ArXiv: math.SG/0201032 (preprint).
- [21] D. McDuff, D. Salamon, Introduction to Symplectic Topology, Clarenton Press, Oxford, 1998.
- [22] D. McDuff, D. Salamon, J-Holomorphic Curves and Symplectic Topology, Amer. Math. Soc. Colloq. Publ., Providence, 2004.
- [23] D. McDuff, S. Tolman, On nearly semifree circle actions. ArXiv: math.SG/0503467 (preprint).
- [24] D. McDuff, S. Tolman, Polytopes with mass linear functions (in preparation).
- [25] L. Polterovich, The Geometry of the Group of Symplectic Diffeomorphisms, Birkhäuser, Basel, 2001.
- [26] D. Salamon, E. Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. XLV (1992) 1303–1360.
- [27] A. Viña, Generalized symplectic action and symplectomorphism groups of coadjoint orbits, Ann. Global Anal. Geom. 28 (2005) 309-318.
- [28] A. Viña, A characteristic number of Hamiltonian bundles over S^2 , J. Geom. Phys. 56 (2006) 2327–2343.
- [29] A. Weinstein, Cohomology of symplectomorphism groups and critical values of Hamiltonians, Math. Z. 201 (1989) 75-82.