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Abstract

If s and n are integers relatively prime and Ham(G(C™)) is the group of Hamiltonian symplectomorphisms of the
Grassmannian manifold G (C"), we prove that 7r; (Ham(Gs(C"))) > n.

We prove that 71 (Ham(M)) contains an infinite cyclic subgroup, when M is the one point blow up of CP3. We give a sufficient
condition for the group 771 (Ham(M)) to contain a subgroup isomorphic to Z”, when M is a general toric manifold.
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1. Introduction

Let (M,w) be a closed symplectic 2n-manifold. By Ham(M, w) is denoted the group of Hamiltonian
symplectomorphisms of (M, w) [21,25]. The homotopy type of Ham(M, w) is only completely known in a few
particular cases [20,25]. When M is a surface, Diffo(M) (the connected component of the identity map in the
diffeomorphism group of M) is homotopy equivalent to the symplectomorphism group of M, hence the topology
of the groups Ham(M) in dimension 2 can be deduced from the description of the diffeomorphism groups of surfaces
given in [6] (see [25]). On the other hand, positivity of the intersections of J-holomorphic spheres in 4-manifolds
played a crucial role in the proof of results about the homotopy type of Ham(M) when M is a ruled surface (see [9,1,
2]). But these arguments which work in dimension 2 or dimension 4 cannot be generalized to higher dimensions.

Using properties of the symplectic action on quantizable manifolds, in [27] we gave a lower bound for
fir; (Ham(Q)), when Q is a quantizable coadjoint orbit of a semisimple Lie group G and this orbit satisfies some
technical hypotheses. By quite different methods McDuff and Tolman have proved the following result: if O is a
coadjoint orbit of the semisimple group G, and the action of G on O is effective, then the inclusion G — Ham(O)
induces an injection on 711 [23]. This result answers a question posed in [29].

Here we give a new approach to determine lower bounds for | (Ham(Q)). We will consider curves in G with
initial point at e. Every family {g; | ¢ € [0, 1]} of elements of G, with g9 = e and g; € Z(G) defines a loop ¥ in
the group Ham(QO). We will use the Maslov index of the linearized flow to deduce conditions under which the loops
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¥ and 1, generated by the families g, and g; with different endpoints, are not homotopic. So our lower bounds for
g1 (Ham(QO)) will be no bigger than £Z(G).

In particular we consider the group SU(n + 1) and an orbit O diffeomorphic to the Grassmannian G(C"*!) of
s-dimensional subspaces in C"*!, with s and n + 1 relatively prime. For each element of Z(SU(n + 1)) we will
construct a curve g, in SU(n + 1) such that the corresponding loops in Ham(O) relative to different elements of
Z(SU (n+ 1)) have distinct Maslov indices. So these loops are homotopically inequivalent, and we have the following
theorem.

Theorem 1. If O is a coadjoint orbit of SU (n + 1) diffeomorphic to the Grassmannian G;(C"') with s and n + 1
relatively prime, then

fr1(Ham(O)) > n + 1. (1.1)

In [27] we gave a lower bound for frr; (Ham(Q)), when Q is a quantizable coadjoint orbit. For the Grassmann
manifolds to which the results of [27] are applicable, the bound given in [27] coincides with (1.1). However the
results obtained here are more general, since now we do not assume that O is quantizable. We also give a lower bound
for 71 (Ham(©)) when O is a coadjoint orbit of SU (n + 1) diffeomorphic to a general flag manifold in C"*+1.

On the other hand, a loop ¥ in the group Ham(M, w) determines a Hamiltonian fibration E % §? with standard
fibre M. On the total space E we can consider the first Chern class ¢ (VT E) of the vertical tangent bundle of E.
Moreover on E is also defined the coupling class ¢y € H 2(E,R) [11]. This class is determined by the following
properties:

@) i;‘ (cy) is the cohomology class of the symplectic structure on the fibre n_l(q), where i, is the inclusion of
77 1(g) in E and g is an arbitrary point of S2.

(i) (cy)" ! = 0.

These canonical cohomology classes of E determine the characteristic number [19]

Iy :/ (VT E)cy,. (1.2)
E

Iy, depends only on the homotopy class of . Moreover [ is an R-valued group homomorphism on 7 (Ham(M, w)),
so the non-vanishing of 7 implies that the group m;(Ham(M, w)) is infinite. That is, / can be used to detect the
infinitude of the corresponding homotopy group. Furthermore I calibrates the Hofer’s norm v on 71 (Ham(M, w)) in
the sense that v(y/) > C|Iy |, for all ¥, where C is a positive constant [25].

In [28] we gave an explicit expression for the value of the characteristic number Iy,. This value can be calculated
if one has a family of local symplectic trivializations of T M at one’s disposal, whose domains cover M and are fixed
by the ¥;’s (see Theorem 3 in [28]). In this paper we use this theorem of [28] to prove that w1 (Ham(M)) contains
an infinite cyclic subgroup, when M is the one point blow up of CP3. More precisely, in Section 3 we will prove the
following result about the Hamiltonian group of the one point blow up of CP3.

Corollary 2. Let (M, w) be the symplectic toric 6-manifold associated to the polytope obtained truncating the
tetrahedron of R3 with vertices (0, 0, 0), (z, 0, 0), (0, 7, 0), (0,0, 7) by a horizontal plane [10], then w1 (Ham(M, w))
contains an infinite cyclic subgroup.

Using quite different techniques McDuff and Tolman proved this result in [24].

We also give a sufficient condition for r; (Ham(M)) to contain a subgroup isomorphic to Z”, when M is a general
toric manifold. More precisely, let T be the torus (S 1 ),and t = R® --- ® Rits Lie algebra. Given w; € Z’, with
j=1,...,mand t € R" we put

M:!ze@m:nzmlzwj:r}/'ﬂ", 1.3)

j=1
where the relation defined by T is

2mi(w;,

(zj) ~ (z’j) iff there is & € t such that z;- =zje £) forj=1,...,m. (1.4)
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We will assume that there is an open half space in R” which contains all the vectors w; and that {w;}; spans R".
We also assume that 7 is a regular value of the map

m

ZGC’"»—)nZ|zj|2wj eR".

Jj=1

Then M is a closed toric manifold of dimension 2n := 2(m — r) [22].
For j =1, ..., m we put /1, for the symplectomorphism

jlﬁt:[z]EMl—>[zl,...,zjezmt,...,zm]EM.

Let f; be the corresponding normalized Hamiltonian and

o = f-w"—1> ) (1.5)
! 1; </{\[z]:zk=0} !

In Section 4 we will prove the following theorem.

Theorem 3. Let (M, w) be the toric manifold defined by (1.3) and (1.4). If there are p numbers linearly independent
over Zin the set {ay, ..., a;}, where o} is defined by (1.5), then w1 (Ham(M, w)) contains a subgroup isomorphic to
ZP. (If p = 0 we mean by ZP the trivial group.)

If (M, w) is the toric manifold determined by the Delzant polytope A C t*, where T is an n-dimensional torus,
we deduce a formula for the value of I on the Hamiltonian loops generated by the effective action of 7 on M. In this
formula geometrical magnitudes relative of A and the generator of the loop are involved (Proposition 9).

We denote by My = EHam(M) Xgamm) M — BHam(M) the universal bundle, with fibre M, over the
classifying space BHam(M). Let ¢ € H?(My, R) denote the coupling class [14]. If G is a compact Lie group
and ¢ : G — Ham(M) be a group homomorphism, then ¢ induces a map ¢ : BG — BHam(M) between
the corresponding classifying spaces. By means of this map the class ¢ induces a class ¢y € H 2(M¢), where

My = EG xg M. The class cy is in fact the coupling class of the Hamiltonian fibration My 2 BG [21]. Using
¢y and c‘f’(TM ), the G-equivariant first Chern class of T M, we define

Ri($) = pul(cD (T M)) (cp)™ ™),

P« being the integration along the fiber. The classes R;(¢) were used in the paper [14] to study the cohomology of
classifying spaces, and they are generalizations of the Miller—Morita—Mumford classes. Furthermore R;(¢) can be
calculated by the localization formula in G-equivariant cohomology.

In the set of all Lie group homomorphisms from G to Ham(M) we declare that two elements are equivalent if they
are homotopic by means of a family of Lie group homomorphisms from G to Ham(M). The quotient set is denoted by
[G, Ham(M)]gp. If ¢ and q~5 are two Hamiltonian G-actions on M which define the same element in [G, Ham(M)]g,
then R;(¢) = R;(¢). Thus, one has a numerical criterion for two Hamiltonian G-actions not to be equivalent under
homotopies consisting of Hamiltonian G-actions. We will prove the existence of pairs of Hamiltonian circle actions in
a Hirzebruch surface, which define the same element in 771 (Ham) but its classes in [U (1), Ham(M)],, are not equal.

If w : M — g*is a moment map for a G-action ¢ on M, we denote with {2, the equivariant closed 2-form
 + w [13]. Given Z € g we denote by Ry (Z) the number

Ry(Z) == Qri)™" f el (@), (1.6)
M

When G = U(1) and p is normalized, {2 is a representative of the coupling class c4. If X € g generates a loop

¢ in Ham(0O), where O is a regular coadjoint orbit of G, then Ry (X) is the Fourier transform of the orbit and the

Harish-Chandra Theorem (see [5]) allows us to calculate Ry (X) in terms of the root structure of g. Using this fact we

give an example of two Hamiltonian circle actions on CP! which define the same element in 77; (Ham) but they are

not homotopic by a family of circle actions.
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The paper is organized as follows. In Section 2 we calculate the Maslov index of the linearized flow of certain
loops in the Hamiltonian group of flag manifolds, and determine lower bound for the corresponding iy (Ham).

If M is the one point blow up of CP3, then M is a submanifold of CP! x CP3, and the natural actions of U (1) on
the projective spaces define Hamiltonian loops ¥ in M. Section 3 is concerned with the determination of Iy, for these
loops. As a consequence of these calculations we deduce that Z C w1 (Ham(M)).

In Section 4 we generalize the arguments developed in Section 3 to toric manifolds. From this generalization it
follows a sufficient condition, stated in Theorem 3, for the existence of an infinite subgroup in 71 (Ham(M)), when
M is a toric manifold. Finally we check that this sufficient condition does not hold for CP” with n = 1, 2. This is
consistent with the fact that 71 (Ham(CP™)) is finite forn = 1, 2.

In Section 5 the R;(¢) are introduced. If M is a Hirzebruch surface, the toric structure allows us to define two
Hamiltonian S!-actions ¢, ¢, which are not homotopic by means of a set of U (1)-actions, since Ri(¢) # R ().
When M satisfies some additional hypotheses we will prove the existence of infinitely many pairs (¢, ¢’) of circle
actions on M, such that [¢] = [¢'] € w1 (Ham(M)), but [¢] # [¢'] € [U(1), Ham(M)]gp.

Conventions. We use the following conventions. If f; is a time-dependent Hamiltonian on (M, w), the
corresponding Hamiltonian vector Y; is defined by

= —df,. (17

This time-dependent vector field vector determines the respective family ; of symplectomorphisms by

d .
awt = Y[ o Ipt’ Ip() =id. (18)
If the group G acts on M and X € g, by X is denoted the vector field whose value at x € M is
d —tX
Xpyx)= — e “x. (1.9)
dr |,

If the action of G is Hamiltonian, a moment map p : M — g* satisfies du(X) = tx,,». According to (1.7) and (1.8)
the function f := p(X) defines the isotopy ¢>tx given by

oX (x) ==e*x. (1.10)

Given E — M is a G-equivariant bundle, s is a section of E and X € g, we define the action of X on s as the
section Xs

(Xs)(x) = % Xy s *x). (1.11)
t=0

2. Lower bounds for §z; (Ham(QO))
2.1. Maslov index of the linearized flow

We denote by (M, w) a closed, connected, symplectic, 2n-dimensional manifold. Let ¢ : R/Z — Ham(M, w) be
a loop in the group of Hamiltonian symplectomorphisms at Id. Given x € M, the curve C = {y;(x) | t € [0, 1]}
is null-homotopic [18]. Let S be a 2-dimensional singular disc in M whose boundary is C, and let X1, ..., X, be
vector fields on § which form a symplectic basis of 7, M for each p € S. Then

W« (Xi(x) = Y AR (. 0) X (xo),
k

with x; = ¥, (x) and A € Sp(2n, R). By p will be denoted the usual map Sp(2n, R) — U (1) which restricts to the
determinant map on U (n) [26]. Setting a(t, x) := p(A(¢, x)), we write Jy (X, x) for the winding number of the map
teR/Z — a(t,x) €e U(1). That is,

Ty (X, x) = 1/1 a2 odr
pid, X 27 ot e



A. Vifia / Journal of Geometry and Physics 57 (2007) 943-965 947

If N is the minimal Chern number of M on spheres, the class of Jy (X, x) in Z/2NZ only depends on the homotopy
class of []. The element in Z/2NZ defined by Jy, (X, x) will be denoted J[v] and is the Maslov index of the flow

wt*-

2.2. Coadjoint orbits

Let G be a compact semisimple Lie group, and 1 an element of g*, the dual of the Lie algebra of G. We denote
by O the coadjoint orbit of n equipped with the standard symplectic structure [17]. This orbit can be identified with
G/ Gy, where G, is the stabilizer of 1 for the coadjoint action of G. The subgroup G, contains a maximal torus 7" of
G [12]. We have the decomposition of g¢ as a direct sum of root spaces

gc=tc® @ o
acd
with @ the set of roots determined by 7. We denote by & € [gq, g—q] the coroot of «. Let p be the parabolic subalgebra
p=tc® @ o -
n(i&)=0

By Z 4 is denoted the right invariant vector field on G determined by A € p. Since p is a subalgebra, {Z4 | A € p}
defines an integrable distribution on G. Its projection onto G/ G, is a complex structure on the orbit © compatible
with the symplectic structure. If P is the parabolic subgroup of G¢ generated by p, G¢/ P is this complexification of
G/G, =0, and

Tnl’0 ~gc/p = @ga =1,
aed

where A = {B1,..., B} is a subset of @. Let Ay, ..., A, be a C-basis for n, with A; € 98; then {ZAj}j is a local

frame for 71:°0 on a neighborhood U of 7.
If {g; | t € [0, 1]} is a family of elements of G, such that go = e and g; € Z(G), then

V1 : 86y € G/Gy > 818Gy € G/Gyliepon
is a loop in Ham(Q). Furthermore
W)eZa, = Zg.a,, @.1)
with g - A := Ad,A.
Let g, = exp(Cy), with C; € tand Cyp = 0. As [C, E] = a(Cy)E if E € g4, then we have
Ady, A; =exp(B;(C))A;.

It follows from (2.1) that for v € U the matrix of (). (v) with respect {Z A }jis
diag (eﬂl(c’), R eﬂ’(c’)) e U(r).

The Maslov index J[v] is the class in Z/2NZ of the winding number of the map

t €10, 1] exp (Z ﬁ,-(C,)) = exp (Z a(c,)> eU(). (2.2)

j=1 ac/
That is,
1
JIYl= =Y a(Ci)+2NZ.

2mi acd

We have the following proposition.
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Proposition 4. Let O be a coadjoint orbit of G whose complexification is G¢ /P, with gc/p ~ @Dyep 9a- Let
{Ct}ier0,1] be a curve in t such that Cy = 0 and exp(C1) € Z(G). If

1
S— Y a(C1) €2NZ,
27r10l€/1

then g, = exp (C;) defines a nontrivial element in 71 (Ham(O)).
2.3. Flag manifolds in C"+!

From now to the end of Section 2 G will be the group SU (n + 1), and T the subgroup of diagonal elements. We

denote by A the usual base of roots; that is, A = {«1, ..., a,}, where o; = €; —¢€;+1 (we use the notation of [8]). Each
subset /I C A determines a parabolic subgroup P; of SL(n + 1, C). This subgroup is generated by the subalgebra
pr=tc® @ Ja>
ael

where I consists of all roots that can be written as sums of negative elements in / together with all positive roots [7].
IfI = A—{a,}, then p; = gl(n, C) and si(n + 1, C)/p; is isomorphic

n
@ g9g; =M
j=1

with B; = €,41 — €;. In this case
SL(n+1,C)/Pr~SUm+1)/U(n) =CP".

Next we will determine a lower bound for 771 (Ham(O)), when O is a coadjoint orbit of SU (n 4 1) diffeomorphic
to CP". Let us take a complex number z such that z"*! = 1, and put

g =diag(z',.... 2, z7") e T C SUMm+1).
So g1 € Z(SU(n + 1)), and moreover g; = exp(C;), with

C, = 2K et 1 - 2.3)
= iag(1,...,1, —n), .
1= 1 g

where k is any element of {0, 1, ..., n}. Then (€,41 — €;)(C;) = —2kmti, and in this case the map (2.2) is

t € [0, 1] — exp(—2knmti) € U(1),

whose winding number is —kn. Hence, for k = 0, 1, ..., n we obtain loops {, ¥, | ¢ € [0, 1]} in Ham(O) such that
the corresponding Maslov indices take the values

J W] = —kn +2NZ.
The minimal Chern number of CP" isequal ton+1. As —kn+2(n+1)Z # — jn+2(n+1)Zfork # j € {0, 1, ...n},
then [ ¥] # [ jW] € 1 (Ham(0O)). We have proved the following theorem.
Theorem 5. If O is a coadjoint orbit of SU (n + 1) diffeomorphic to CP", then g1 (Ham(O)) > n + 1.

It is known that 7 (Ham(CP')) = Z/27 and that Ham(CP?) has the homotopy type of PU(3) [9], so
tr1 (Ham(CP?)) = 3. The bound given in Theorem 5 is compatible with those facts.

Proof of Theorem 1. Now we consider coadjoint orbits of SU (n + 1) which are diffeomorphic to the Grassmannian
G(C™*1) of s-dimensional subspaces of C"*!. Let p be the parabolic subalgebra generated by I = A — {a;}; that is,
we delete the s-node in the Dynkin diagram. (If s = n, the corresponding Grassmannian is CP".) Now

slin+1,C)/p = P op
B

with =¢; —¢,j=s+1,...,n+1landi=1,...,5.
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With the above notations (¢; — €;)(C;) = 0 for any 7, j with j # n + 1. Now the map (2.2) is
t € [0, 1] — exp(—2kstmi) € U(1),

and its winding number is —ks. The minimal Chern number N for the Grassmannian G¢(C"*1) is n 4+ 1. If s and
n + 1 are relatively prime then

#H{—ks+2m+1)Z|k=0,1,...n}=n+1. O
Given p a parabolic subalgebra of s/(n + 1, C) which contains the standard Borel subalgebra, then

slin+1,0)/p = P op,

BeA
where A = @\ I.
Givena € {1,...,n+ 1} we put
(a)=t{B=€ —ea e A} —4{B =€ —¢; € A}. 2.4

Let C;(a) be the element of t defined by

kit
C,(a)=n”1 diag(l, ..., 1, =n,1,..., 1), 2.5)

+1

where —n is in the position a. The element C; in (2.3) is equal to C;(n + 1). We consider the curve g, = exp(C;(a)),
then

Y B(Ci(@)) = 2kit (a),
BeA

and the winding number of the map 7 > exp Y (C;(a)) is k{a). Hence
gy Ham(SL(n + 1, C)/P)) > t{k{a) +2NZ |k =0, 1, ..., n}.

So one arrives at the following result.

Theorem 6. If O is a coadjoint orbit of SU (n + 1) diffeomorphic to the flag manifold SL(n + 1, C)/ P, then

1 (Ham(0)) =

.....

where the integer {(a) is defined by the parabolic subalgebra p by (2.4).
3. Hamiltonian group of the one point blow up of CP3

Given 7,0 € R.q, with o < 7, let M be the following manifold
M={zeC :|zi]* + |22l +|z31* + |zs|* = 7/, |z3* + |24 = o/ }/ T, 3.1)
where the action of T = (S1)?2 is defined by

(a,b)(z1, 22, 23, 24, 25) = (az1, aza, abzz, bza, azs), (3.2)

fora,b e S
M is a toric 6-manifold; more precisely, it is the toric manifold associated to the polytope obtained truncating the
tetrahedron of R? with vertices

0,0,0),(r,0,0), (0, 7,0), (0,0, )

by a horizontal plane through the point (0, 0, A), with A := t — o [10].
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For 0 # z; € C we put z; = pjel’i, with |z;| = p;. On the set of points [z] € M with z; # O for all i one can
consider the coordinates

2 2 2
Pi ) P3
A y T y T ) 3 '3
< ) $1 > P2 ) 903) (3.3)
where the angle coordinates are defined by
@1 =01 — 065, @2 =6 — 05, @3 =03 — 04 — 5. (34

Then the standard symplectic structure on C> induces the following form w on this part of M
3 /2
J
w=2d<7>/\d<pj. (3.5
j=1
3.1. Darboux coordinates on M
Let0 < € << 1, we write
By ={lz]l € M : |zj| > €, forall j}.
For each j € {1, 2,3, 4,5} we set
B; ={lz] € M :|zj| < 2¢ and |z;| > €, forall i # j}.

The family By, ..., Bs is not a covering of M, but if [z] & UB, then there are i, j, withi # j and |z;| < € > |z].
‘We will define Darboux coordinates on By, ..., Bs. On By we will consider the well-defined Darboux coordinates
(3.3).

On By, pj # 0 for j # 1; so the angle coordinates ¢, and @3 of (3.4) are well-defined. We define x, y; by the
relation x| + iy; := p1e'¥! and x; = 0 = yy, if z; = 0. In this way we take as symplectic coordinates on B

2 2
P P
(xlv ylv 729 9021 737 §03> .

We will also consider the following Darboux coordinates: On B,

2 2
(%1 @1, X2, ¥2, %3 §03> . withxp +iy2 := p2e'¥?; andxo = 0=y, if 20 = 0.
On B3
2 2
o p . ,
(7] @1, 72 ©2, X3, y3> ,  where x3 +1y3 = pze'¥3.
On By
i Pl :
7], @1, ?2 @2, x4, y4 |, Wwithxg +1iys := pse'? and 4 = 64 — 03 + 6s.
On B;
2 2
P 03
X5, s T~ 0 s TN 0 5
( 52 Y5 55 X2 X3>

x5 +iys = pses, x2 =001, X3 =03 — 01 — 04, x5 =05 — 0.
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If [z1, ..., z5] is a point of
5
M\ J B,
i=0
then there are a # b € {1, ..., 5} such that |z4], |z5| < €. We can cover the set M \ | J B; by Darboux charts denoted
Bg, ..., By similar to the preceding B;’s satisfying the following condition. The image of each B,, witha =6, ..., q,

is contained in a prism of R® of the form

6
H[Ci, d;],
i=1

where at least two intervals [c;, d;] have length of order €.
By the infinitesimal “size” of the Bj, for j > 1, it turns out

/ 0’ =0(), forj>1. (3.6)
B,

J

3.2. Aloop in Ham(M)

Let y; be the symplectomorphism of M defined by

Yilzl = [z16*™, 22, 23, 24, 75]. 3.7

Then {y}; is a loop in the group Ham(M) of Hamiltonian symplectomorphisms of M. By f is denoted the
corresponding normalized Hamiltonian function. Hence f = np12 — k with k € R such that [ ut w3 =0.
We will calculate Iy, using the following result proved in [28] (Theorem 3 of [28]).

Theorem 7. Let v : S! — Ham(M, w) be a closed Hamiltonian isotopy generated by the normalized time-
dependent Hamiltonian f;. If {B1, ..., By} is a set of symplectic trivializations for T M which covers M and such
that Y, (Bj) = Bj, for all t and all j, then

m
h=yoaf ey (338)
i=1

i\Uj<i Bj i<k

where
Ni :an dr (f,ow,)(dlogrik)/\w”_l,
27'[ s! Air

Aix = (0B; \ U<k By) N By, J; is the Maslov index of (V) in the trivialization B; and ri; the corresponding
transition function of det(TM).

We will prove that, in the case we are considering, some summands in (3.8) are of order €. We will neglect the
order € summands, and in this way we will obtain an expression which is equal to Iy, up to an addend of order €.

In the coordinates (3.3) of By, v, is the map ¢| — ¢ 4+ 2m¢. So the Maslov index Jg, = 0. It follows from (3.6)
and Theorem 7

Iy =) Ni+ 0. (3.9)
i<k
with

3i 5
Nix = — fdlogr,-k AN
27 Jay
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If [z] € Aix C 0B; N By, with 1 <i < k, then at least the modules |z,| and |z;| of two components of [z] are of order

€; s0 Nji is of order € when 1 < i < k. Analogously Ny is of order €, for k = 6, ..., g. Hence (3.9) reduces to
5
Iy =" Nox + O(e). (3.10)
k=1
If we put
/ 3i 2
Ny = — fdlogrix A w*, (3.1
2 Al
Ok
with

Ay ={lz] € M : |zx| = €, |z/| > € forall r # k},
then
Nok = Ny + O(e)
and
5
Iy = ZN(/)k + 0(e). (3.12)
k=1

3.3. Calculation of the Ny, ’s

First we determine the value of N(’n. To know the transition function rg; one needs the Jacobian matrix R of the
transformation

2 2 2 2 2
p o o o o
<X1,y1, 724;?2, 73,g03> — (71,401, ?2,@, 73403)

in the points of A61 ; where p]2 = xl2 —i—ylz, @1 = tan~ ! (y1/x1). The function ro; = p(R), where p : Sp(6, R) — U (1)
is the map which restricts to the determinant on U (3) [26]. The non-trivial block of R is the diagonal one

X1 )N
r s’

with r = —y; (xf + y%)_1 and s = x1 (xl2 + y12)_1. The non-real eigenvalues of R are

inm—u+mﬂ

2 2

X1+
)»izl

These non-real eigenvalues occur when (s + x1)2 < 2. 0On A61 this condition is equivalent to |cos ¢1| < 2¢ (e2 +
1)_l =: §, since p; = € for the points of A61.
If y; > O then A_ of the first kind (see [26]) and A is of the first kind if y; < 0. Hence, on A61,
A+|A+|_1 =x+1iy, if|cos¢i| < §andy; <O;
p(R) = {A_|a_|"' =x —iy, if|cosgi| <8andy, > 0;
+1, otherwise;

where x = 8! cos g1, and y = v/1 —x2.
If we put p(R) = e' then, for the points of A, in which | cos ¢1| < 6,

4 ) —/1—cos?y, if sing; > 0;
cosy =48 cosg), and siny =
1 —cos?y, if sing < 0.
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So, when ¢ runs anticlockwise from 0 to 27, y goes round the circumference clockwise; that is, y = h(¢;), where
h is a function such that

h(0)=2n, and hQm) =0. (3.13)
Asrg; = p(R), thendlogrg; = idh.
On A61 the symplectic form (3.5) reduces to (1/2) (d,o% Adgy + d,o% A dg3). From (3.11) one deduces

3i ah
Njy = = / if —dgi Adp3 Adgs Adp3 A dgs. (3.14)
4 Jay, " 0

The submanifold A61 is oriented as a subset of d By and the orientation of By is the one defined by 3, that is, by
dpf Ader A dp% Adpr A dpg A des.

Since p; > € for the points of By, then A61 is oriented by —dg; A dgo% Adps A d,o32 A dg3. On the other hand, the
Hamiltonian function f = —k 4+ O(¢€) on Abl. Then it follows from (3.14) together with (3.13)

o/m ‘[/J‘[—,O%
Ny, = 6n2K/ dp%/ dp3 4+ 0(e)
0 0
that is,
N§; = 3k(x* = 2% + O(e). (3.15)

The contributions N, N5, N|)4, N|s to (3.12) can be calculated in a similar way. One obtains the following results
up to addends of order €

Njp = Njs = —(0* =2 +3c(x? =23, Niz=1*Gc—1), Ny = »*Gr — 4). (3.16)
As I is independent of ¢, it follows from (3.12), (3.15) and (3.16)
Iy = 6k (2t — 2%) + 23 =373, (3.17)
On the other hand, straightforward calculations give
1
/ = (r3 — A3), and / rr,o%a)3 = —(r4 —A4).
M M 4
So
_ 1 /4= (3.18)
Ta\oa) '

It follows from (3.17) and (3.18)

;o M3 48T - 67227 42 3.19)
v 2(c3 - 43) ' '

Hence Iy is a rational function of T and A. It is easy to check that its numerator does not vanish for 0 < A < 7. So we
have proved the following proposition.

Proposition 8. If v is the closed Hamiltonian isotopy defined in (3.7), then the characteristic number I, # 0.

Proof of Corollary 2. By Proposition 8 Iy, # 0. As I is a group homomorphism on 71 (Ham(M, w)), then the class
(V'] € 71 (Ham(M, w)) does not vanish, forall/ € Z\ {0}. O
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4. Hamiltonian group of toric manifolds

In this section we generalize the calculations carried out in Section 3 for the 6-manifold one point blow up of C P3
to a general toric manifold. Now (M, w) will denote the toric manifold defined by (1.3) and (1.4).

When 0 # z;, € C, we write z, = ppe'®. The standard symplectic form on C™ gives rise to the symplectic structure
won M. On

{[z] € M : z; # 0 forall j}

w can be written as in (3.5)

n pZ_
=) d| | Adeai,
w ; 5 Dai
with @,; a linear combination of the 6,’s.

Given 0 < € << 1, we set

By ={lz]l € M : |zj| > € forall j}
B = {[z] € M : |zk| < 2€,|zj| > € forallj # k},

as in Section 3. On By we will consider the Darboux coordinates

2

Pai

2 k] at ' .
i=1,...,n

Given k € {1, ..., m} we write w in the form
2 n—1 2
Pk Pki
wo=d|—=—]Ad d| =) Adoy;,
(2) nrl (2) "
where ¢ and @y; are linear combinations of the 6.’s. Then we consider on By the following Darboux coordinates

2

IO .
{Xk,yk, %vfﬂki] ,
i=1,...n—1

.....

with xi, yr defined by x; + iy; == pkei‘/’k, ifzx #0and xx =0 = yi,if zx = 0.
We denote by ¥, the map

I/II : [Z] € M = [ZICZNita 227 ~--7Zm] € M'

{; : t € [0, 1]} is a loop in Ham(M). By repeating the arguments of Section 3 one obtains

m
Iy = Ny + 0(e).
k=1

where
i
Ny = n—/ fdlogrop A",
27 Jay,
Al ={lz] € M : |z| = €, |z;] > e forall j # k},

and f = npf — k1, with

/ 7Tp12wn=IC1/ o".
M M
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As in Section 3, on A6k the exterior derivative dlogror = ih’(¢)dey, where h = h(gpy) is a function such that
h(0) = 2w, h(2w) = 0. Then

Nox = —”/ fo" '+ 0Ce),
{[z]:2x =0}

where {[z] € M : z; = 0} is oriented by the restriction of  to this submanifold. Since Iy, is independent of €, we
obtain

m
Iy=-n)_ (/ (Tpi — K1)a)”1> ) )
k=1 \{lz]:zx=0}

For j =1,...,m we write

m
aj =y (/ (p; — Kj)w"_l) , (4.2)
k=1 \Y{[z]:zx=0}

where «; is defined by the condition

/np?w”:xj/ ",
M M

Proof of Theorem 3. Let us assume that a1, ..., «, are linearly independent over Z. For j =1, ..., p we put
j‘ﬁ, zle M~ [Z1,...,Zj62””,...,zm] eM.

Given g = (q1, ..., qp) € ZP we denote by v the path product
G Py

Formula (4.1) together with the fact that / is a group homomorphism give

P
Iys = —n Z qid;.
i=1

Analogously if ¢ = (q{, ..., q),) € ZP, then Iy =-—n >/, g/a;. By the linear independence of 1, . .., @, from

I,y = Iyq itfollows g = q'. So ¥4 is homotopic to 4 iffg = ¢/. O

Example. We will check the above result calculating the family {«;} defined in (4.2) in two particular cases: when
the manifold is CP! and when it is C P2.
For

M=CP'={(z1,22) € C? : |21 > + |22* = t/7}/S,

we have
/ rr,o%a) = 12/2, f w=T.
M M
Thus k1 = t/2 and 1 = —k1 + 7 — k1 = 0. Similarly oy = 0. In this case the number p in Theorem 3 is 0. This is
compatible with the fact that | (Ham(CPY)) = 2/27Z.
For

M =CP? = {(z1,22,23) € C*: |z1* + |22 + |23 = ¢/7}/S",

we have the following values for the integrals involved in the definition of «

/ P rz, / y'r,o%wz = t3/3.
M M
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So k1 = t/3. Moreover for k € {1, 2, 3}

/ 0=t
{[z]:2x =0}

On the other hand, for k = 2,3

f np%a) = 1:2/2.
{[z]:z,=0}

Sow; = —kjT + (r2/2 —K1T) + (r2/2 — «17) = 0. Analogously ap = a3 = 0, so p in Theorem 3 is also 0. This
result is consistent with the finiteness of 7; (Ham(CP?)), for Ham(C P2) has the homotopy type of PU (3) [9].

Remark. On the manifold M one point blow up of CP3, defined by (3.1) and (3.2), one can consider the loop ¥
defined by

Vilzl = 21, 22, 236%™, 24, 251. 4.3)
A similar calculation to the one carried out in the proof of (3.19) shows that I; = —31y,.
In the definition of M the variables z1, z2, z5 play the same role. However we can consider the following S!-action
on M

2mit

, 251, 4.4)

and it turns out that / b= 31y . Thus Theorem 3 guaranties that only Z is contained in 771 (Ham(M)).

Let (M, w) be the toric manifold determined by the Delzant polytope A C t*, where T is an n-dimensional torus.
Next we give a formula for the value of 7 on the Hamiltonian loops generated by the effective action of T on M, in
which are involved geometrical magnitudes relative to A and the generator of the loop.

By u : M — t* is denoted the moment map for the T-action. Let b be an element of the integer lattice of t, and let
Y the S'-action determined by b. The corresponding normalized Hamiltonian function is f = (i, b) — k', with

/(u,b)w”:tc/ ",
M M

Since

/,ua)":Cm(A)/ ",
M M

where C m(A) is the center of mass of A, it follows k = (Cm(A), b).
According to (4.1)

Yilz]l = [z1, 22, 23, z4€

Iyy=-nY_ [ (b} = (Cm(4),b) ",
k=1 D«

where Dy = ,u_l(Fk), and Fy, ..., F,, are the facets of A.
We define C m(Dy) by the relation

Cm(Dy) ! =/ po" L,
Dy

Dy
and
Vol(Dy) = L1 / "l
(n — D! o)1 Jp,
Then
Iy, = n!2m)" ! Z(C m(A) — Cm(Dg), b)Vol(Dy). 4.5)
k=1

Thus we have the following proposition.
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Proposition 9. Let (M, w) be the toric manifold associated to the polytope A. If there is b in the integer lattice of t
such that
m
Z(C m(4) — Cm(Dx), b)Vol(Dy) # 0,
k=1

then b generates an element of infinite order in the group w1 (Ham(M, w)).
5. Hamiltonian G-actions

Let G be a compact Lie group and ¢ : G — Ham(M, w) a Hamiltonian G-action on M. The group homomorphism
¢ induces a map

® : BG - BHam(M, w)

between the corresponding classifying spaces.
On the other hand, one has the universal bundle with fibre M

M — My := EHam (M) Xgam ) M

inﬁ

BHam(M),

where EHam(M) — BHam(M) is the universal principal bundle of the group H := Ham(M, w).
The pullback #~'(My) of My by @ is a bundle on BG which can be identified with p : My = EGxgM —
BG. Thus we have the following commutative diagram

M¢i>MH

”l l

BG e BH.

There exists a unique class ¢ € H 2(M H,R) [14] called the coupling, such that ¢ extends the fiberwise class
[w] and 7y, ¢"*! = 0 (where my, is the fiber integration). We put cg for the pullback of ¢ by @'; that is,

cy = 9*(c) € H*(My, R). Since
Py = ¢* (e =0,

¢ is the coupling class of the Hamiltonian fibration My — BG [21].
We can also consider the vector bundle

(TM)y := EG xg TM — M,.

The first Chern class ¢1((T M)y) is the G-equivariant first Chern class of 7'M, and it will be denoted by c?.

By Hom(G, Ham(M)) is denoted the set of all Lie group homomorphisms ¢ from G to Ham(M, w). In
Hom(G, Ham(M)) one defines the following equivalence relation:

¢ ~ ¢ iff there is a continuous family {¢* : G — Ham(M )}seo,1] of Lie group homomorphisms, such that V=09
and ¢! = ¢; that is, iff ¢ and ¢ are homotopic by a family of group homomorphisms. We denote by [G, Ham(M)] gh
the corresponding quotient set. This space is just a set of connected components of the space of homomorphisms from
G to Ham(M, w).

If ¢ ~ @, then the bundles &' (My) and &~!(My) are isomorphic. Moreover the isomorphism M, — M, 3

applies ¢ 3 in ¢y and c? in c?.
Forj=0,1,...,n weput

Bj(@) = (c(f)j (cp)" ™ € H™(My, R).
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We write R (¢) = p«(Bj(¢)) € H %(BG). By the localization formula in G-equivariant cohomology [5,13]

(@ =S,z (Plz
m@—2m<q>, (5.1)

V4

where Z varies in the set of connected components of the fixed point set, pf : Hg(Z) — H(BG) is the fiber
integration on Z, and ez is the equivariant Euler class of the normal bundle to Z in M.
From the preceding arguments it follows the following theorem.

Theorem 10. Given ¢ and é two Hamiltonian G-actions on M, if there are j € {0,1,...,n} and X € g such that
Rj(@®)(X) # Rj($)(X), then [¢] # [¢] € [G, Ham(M)]gp,.

Ifoe H 2(M¢, R) is an element which restricts to the class of the symplectic form on the fiber in the fibration
p: My — BG, then

1 .
¢p == P (pu@T),

where the constant k = (n + 1) f y @" (see [14]). In particular, if G = U(1) we denote by f the normalized
Hamiltonian function; that is, tyw = —d f and f M fo" =0, where Y the vector field on M generated by ¢. Then ¢y
is the class in H 2(M(,)) defined by the U (1)-equivariant 2-form @ + fu, where u is a coordinate on the Lie algebra
u(1) dual of a fixed base X of u(1) (see [16,13]).

When G = U(1) arepresentative of c‘f (det(TM)) can be constructed following [3] or [5]. Let s be a local section
of det(TM) over the open V. The infinitesimal action of X on the section s is the section Xs defined in (1.11). Xs is
a section which can be written as the product L - s, of a function L on V and s. If « is the form relative to s of an
equivariant connection on det(7M), and X, is the Hamiltonian vector field on M defined in (1.9), then

2_711i (da + (L — LXMoz)u) , 5.2)
is a representative of c‘lp (det(TM)) on V. So a representative of 81 = c?(TM )cg_1 onV is

2_—7:1 (do + (L — txy0)u) A (@ + fu)"'. (5.3)

On the other hand, if G = U(1) and  : M — u(1)* is the normalized moment map, Ry (Z) defined in (1.6) is
equal to

1\ .
R(p(Z):(%) /Mel‘f¢<z>, (5.4)

for any Z € g. So Theorem 10 is applicable to R.
5.1. Flag manifolds

Let n € g* be a regular element; that is, the stabilizer G, of n for the coadjoint action of G is a maximal torus
T. By O is denoted the coadjoint orbit of 1, endowed with the Kirillov symplectic structure w. The G-action on O is
Hamiltonian and the inclusion map u : O — g* is a moment map for this action. The Fourier transform of the orbit
O is the function F defined on g by (see [5])

1\" .
F(X) — <%> Lel(ﬂ(x)+w), (55)

where X € gand n = (dim O)/2.
Let Y be a vector of g, by ¢>,Y we denote the isotopy defined in (1.10). If {q&ly}te[o,l] is a closed curve in Ham(O),
we have a Hamiltonian circle action ¢Y : U(1) - Ham(O) and u(Y) is a Hamiltonian function for this S action. If

o (o) )

then f = w(Y) — « is the normalized Hamiltonian which generates the U (1)-action.
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On the other hand, one deduces from (5.5)

d F(IY)—<L>Hif Y)o" (5.7)
drl_, “\ox) m JoMY '

It follows from (5.6) and (5.7) the following formula for the constant «

—i

= Nol(0) dar

F(@Y), (5-8)
=0

where the symplectic volume is

11 .
Vol(0) = G /O .

According to (5.4) and (5.8) we have the following proposition.

Proposition 11. Given Y € g, if ¢¥ is a loop in Ham(Q), then

R¢y(Y) = exp <—% log F(tY)> FY). 5.9

t=0
Let W be the Weyl group determined by the torus 7 and X an regular element of t. The Harish-Chandra theorem
gives a formula for F(X) in terms of roots of t (see [5])

FX) = [] @)™ ) e)e®n, (5.10)

n(ia)>0 weWw

where €(w) is the signature of the permutation w € W. From (5.9) and (5.10) one deduces that R¢y(Y) can be
calculated using the root structure defined by the pair (G, T).

Example. Let G = SU(2) and 1 € su(2)* defined by

bz
n: (-Z —bi) esu(2)— b eR.
The stabilizer of n is T = U(1), the coadjoint orbit O is CP! and the corresponding symplectic form is wgrea. The
Weyl group W = N(T')/T, with N(T) the normalizer of T in SU (2), consists of the class of id and the class of

0 1
(_1 o)' 5.11)

If @) = €] — € is the usual base of roots, then n(iz;) = 1. In this case the product in (5.10) has only one factor
and the sum of two addends.

Let Y = diag(wi, —mi), then the vector C; in (2.3) forn = k = 1 is equal to ¢tY. Thus oY is the loop in Ham(O)
denoted by (v in Section 2. This loop defines the only nontrivial class of 7; (Ham(Q)) (see the paragraph before
Theorem 5).

If w is the element of W defined by (5.11), then wY = diag(—mi, i), and n(wY) = —m. Furthermore
o1 (Y) = 2mi. It follows from (5.10)

1 ) .
F(Y) = — (em — e_m> =0
2mi
By (5.9) Ryr (Y) = 0.
In general, if b # 0 then for Z = bY,

sin b

br
The loop determined by 2Y defines the trivial class in r; (Ham(Q)), and Ry (2Y) = 0.

F(Z) =
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On the other hand,
Rgo(X) = Vol(O), (5.12)
for any 0 # X € g. It follows from Theorem 10 and (5.12) the following proposition.

Proposition 12. The circle action on ((CP1 , a)area) defined by diag(2mi, —2mi) € su(2) and the trivial one determine
distinct elements in [U (1), Ham((CPl)]gh.

Proposition 12 gives an example of a pair of Hamiltonian circle actions on (CP!, warea) Which define the same
element in 71 (Ham) but they are not homotopic by a family of circle actions.

5.2. Hirzebruch surfaces

Next we determine the value Ry := R;(¢) for three Hamiltonian actions on a Hirzebruch surface. We will define
these actions using the fact that such a surface is a submanifold of CP! x CP2.
Given 3 numbers k, t, 0, with k € Z.g, 7,0 € R.g and ko < t, the triple (k, t, o) determine a Hirzebruch
surface M (see [4]). This surface is the quotient
{z e C* ikl + 122 + lzal = o/7, |1 P + |23 = o/7)/T,
where the equivalence defined by T = (S!)? is given by

(a,b) - (z1, 22, 23, 24) = (abz1, aza, bz3, azs),

for (a, b) € (12
The map

. koo .ok .
[z1, 22,23, zal = ([22 : z4), [2523 : z423 1 21])

allows us to represent M as a submanifold of CP! x CP?. On the other hand, the usual symplectic structures on CP!
and CP? induce a symplectic form w on M, and the following (S')?-action on CP' x CP?

(a, b)([uo : u1l, [xo : x1 : x21) = ([aug : u1l, [a*xo : x1 : bxa])

gives rise to a toric structure on M. The Delzant polytope associated to (M, w) is the trapezoid in (R?)* whose not
oblique edges have the lengths 7, o, and A := 7 — ko (see [10]). Moreover A is the value that the symplectic form w
takes on {[z] € M : z3 = 0}, the exceptional divisor of M, when k = 1. And w takes the value o on the class of the
fibre in the fibration M — CP!.

Let ¢, be the diffeomorphism of M defined by

2mit

¢ilz1, 22, 23, 4]l = [z1€77 7, 22, 23, z4]. (5.13)

¢ = {¢; : t € [0, 1]} is a loop of Hamiltonian symplectomorphisms of (M, w). The fixed point setis Z = {[z] € M :
z1 = 0}; that is, Z ~ CP! is the section at infinity of M — CP! (see [4]).
On M we can consider the covering
Ur={lzl€ M :23 #0 # z4}, Uy={[z]l € M :z1 #0# 24}
Us={lzleM:z21 #0# 2}, Us={lzl€M:z2#0+#z3}.
SoZNUj=49,for j =2,3. On Uy one defines the complex coordinates
wo = “ wh = L
Y 07 gzt
In these coordinates

r (wo, wp) = (wo, wpe*™ ). (5.14)
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On U; we introduce the complex coordinates

22 <1
wy = —, w) = —- (5.15)
24 3%

Thus on Uj N Uy one has the following relation

8 8 _ a0 D
dwy  dw] 0

5.16
dwop  dwy (5-16)

between the sections of det(TM).

On Z N Uy we have the complex coordinate wy and on Z N Uy the coordinate wy, with wy = wy I By (5.16) the
bundle det(TM)| is the one whose first Chern class is (k + 2); that is, det(TM)|z = O(k + 2).

Let us consider the local section
0 0

s = AN —F
dwy  dw,

of det(TM). We need to determine the corresponding function L which appears in (5.2). From (5.14) it follows

0\ 2 9\ _ ani 0
(@)% (311)0) = 811)()’ (Pr)+ (8w(’)> =¢e aw(,), 5.17)

then
(@0)«(s) = 5.
Thus the above function L is the constant 27r1.

On the other hand, the Hamiltonian vector field X, which corresponds to X = 2xi € u(1) is

d
Xy = —2miwyg—:.
dwy,

On Z' .= Z\ ({wyp = 0} U {w; = 0}) the class B = c‘f(TM)c¢, is represented by the equivariant form

1
(5|Z’ ~ o i O)M) (@lz + flzw), (5.18)

where § is a 2-form representing the ordinary first Chern class of det(TM).

The normalized Hamiltonian function is f = 7 |z;|> — «, with k € R. So fiz = —«. The constant « is fixed by the
normalization condition. An easy calculation gives

o (31 +ko
=2 (2T, 5.19
i 3(2k+ka> (5.19)

Next we calculate the equivariant Euler class ez of the normal bundle Nz to Z in M. Let g be a point of Z’, then

T,M (Ca e 1,7
gV = T q&-
dwy,

Since -2 and % are sections of Nz on Z N U4 and Z N Uj respectively, such that
1

dw,
.

aw,  OGur
1 0

we have Nz = O(k).
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We put w, = x + iy and on Nz we consider the orientation defined by % The vector field X7 at g = (x, y) is
0
Xy =2n (ya% —x%). So
d d a a
Xy, — | =27—, Xy, — | =—2m—.
ox ay ay ox

Then det'/?2([X s, 1) = 27. If c1(O(k)) is represented in Z’ by the 2-form x, then the equivariant Euler class ez is
represented by (see [5])

X+ (=2m) det”™ " ([ Xy, Du=x —u.
It follows from (5.1) and (5.18) that
6 —u)(w—«ku) -1
Ry = ——=— [ —w(w—ku)(1+ x/u) =2« +w(Z). (5.20)
z X—u u Jz
A straightforward calculation gives f , @ = A + ko . It follows from this value together with (5.19) and (5.20)
627+ (9% + 6)Ao + (2k + 3k?)o?
o= 6 + 3ko ’

Given 0 # r € Z we can consider the loop & defined by

(5.21)

&lz] = [Zlezmn, 22, 23, Z4].

The fixed point set for this U (1)-action set is Z as well. The corresponding Hamiltonian action is rf. In this case the
respective function L is 27rri, and now the equivariant Euler class of Nz is ez = ¢1(O(k)) — ru. Hence

Re = _—1 6 —ru)(w—rxu)(1 + x/(ru)) = Ry. (5.22)
ru Jz

Next we shall determine R 5 where the U (1)-action &, is defined by

i L (5.23)

Now the fixed point set is 7= {[z] € M : zo = 0}, it is the fibre over [0 : 1] of the fibration M — CP! and can be
identified with

&1zl = [z1, 228

CP'~{([0:1],[0: z3 : z1D)} € CP! x CP2.
The normalized Hamiltonian function is f = 7|z2|* — &, with

322 + 3k 262
‘= +3kio + ko . (5.24)
6A + 3ko

A calculation similar to the preceding one shows that

R: =2k + w(Z). (5.25)

v
Since f 5w = o, it follows from (5.25) together with (5.24) that

612 + (6k + 6)Ao + (3k + 2k?)c2

Rj = 5.26

v 6 + 3ko (5-26)
One can consider the Hamiltonian loop (;3, defined by

¢zl = [z1, 22, z3e*™, 24]. (5.27)



A. Vifia / Journal of Geometry and Physics 57 (2007) 943-965 963

The corresponding fixed point set is 7= {[z] : z3 = 0}. The normalized Hamiltonian function f is f = 7|z3)* — &,
with

. 3x0 + 2ko?
= 5.28
= 6+ 3ko (5.28)
It is easy to prove that
Ry =2k + w(2), (5.29)
and w(Z) = A.

We can state the following theorem.
Theorem 13. If ¢;, (;3, and qgt are the loops in Ham(M) defined by (5.13), (5.23) and (5.27) respectively, then
Ry = 2k + o(Z), R(Z,:z;z+w(2), R(/;=2/€+a)(2),

where Z, Z, and 7 are the respective fixed point sets and the constants k, K, and & are given by (5.19), (5.24) and
(5.28) respectively.

From (5.21) and (5.26) it follows

3kio + k(k — 1)o?
Ry — R; = 2ot k& = Dom (5.30)

¢ 61 + 3ko
For 0 # r € Z we denote by ¢] the diffeomorphism of M composition

r
—_—~
¢ro---od;

if r > 0, and the obvious composition when r < 0. By (5.22) one has Ryr = Ryp. From Theorem 10 together with
(5.30) one deduces the following corollary.

Corollary 14. If r,r" are nonzero integers, then ¢, and (Z)t’ "are loops in Ham(M) which are not homotopic by a
homotopy consisting of Hamiltonian circle actions.

Finally we consider the 1-parameter subgroup ¢ in Ham(M) defined by the toric structure and the inclusion
ves' e 0ohyhesh?
where [, [ € Z \ {0}. That is,
2milt

ilz] = [21€%71, 206?123, z4]. (5.31)

The fixed point set F of ¢ is the singleton set F' = {[z] € M : z1 = zo = 0}. This point belongs to Uy; and in the
coordinates wi, w/1 (see (5.15)) on U
G(wi, wh) = (w1 i,

Hence

Y N R T W
"\ dw; ow) owy  dw)’

and the corresponding function L is the constant 27i(l + 0.
On the other hand, the corresponding Hamiltonian vector field Yy, is

0 ~ d
Yor = —27i (lw) —— + Tw| —— ),
M m(wlawl + wl&wi)
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which vanishes on F. The normalized Hamiltonian function defined by ¢ is
1wz = &) + (|22 = ).

On F this Hamiltonian reduces to the constant — (Ik + I%).
According to our conventions the U (1l)-action on (C% has multiplicity —/, and the multiplicity on the space
C% is —. , then the equivariant Euler class of the normal bundle to F in M is ep = IIu?. Thus by (5.1) and (5.3),
1

Re = (I + Dk +IR)ahH".
One can state the following proposition.

Proposition 15. Let [, [ be nonzero integers, and ¢ the 1-subgroup of Ham(M) defined by (5.31), then

_ U+ DUk +1k)
a 1
where the constants k and k are given by (5.19) and by (5.24) respectively.

R;

’

Ry is arational function in the variables /, [. Hence Ry = Ry, forany r € Z\ {0}. If 1 = (/, i) andl = (7', f’) are
two pairs of nonzero integers such that the corresponding 1-parameter subgroups ¢ () and ¢ (I') satisfy R;qy # Ry,
then, by Theorem 10, £ (I)" and £ (I')* are not homotopic by a family of Hamiltonian S!-actions, whenever r, s € Z\{0}.

When M is the Hirzebruch surface determined by the triple (k = 1,7 > 2,0 = 1), Abreu and McDuff proved
in [2] that 1 (Ham(M)) is isomorphic to Z. Thus we have the following corollary.

Corollary 16. Let M be the Hirzebruch surface defined by (k = 1,t > 2,0 = 1). There are infinitely many pairs
(¢, ¢ (")) of 1-parameter closed subgroups of Ham(M) such that [t (1)] = [¢X')] € 71 (Ham(M)), but

[cD] # [¢A)] € [U (1), Ham(M)]gp.

Remark 1. Two Hamiltonian circle actions on M, ¢ and ¢’ are conjugate if there exists an element 2 € Ham(M),
suchthath-¢, -h~! = ¢, forall 7. If ¢ and ¢’ are conjugate, let &5 be a path in Ham(M) from Id to &, then hg - ¢ - hs_1
defines a homotopy between ¢ and ¢’, and [¢] = [¢'] € [U(1), Ham(M )gn- By Corollary 16, there are infinitely
many conjugacy classes of circle actions on the Hirzebruch surface considered in this corollary.

Remark 2. Although the characteristic R; allows us to distinguish infinitely many conjugacy classes of Hamiltonian
circle actions in a Hirzebruch surface M, the situation is different for U (l)z—actions, as we show next.
Given 1 = (I, ) a pair of nonzero integers, we define a U (l)z—action on M by

27ils 27ilt
E[z] = [z21€77, 207 | 23, 24].

The fixed point set is again the singleton F, and the equivariant Euler class e = Iluv, where u, v are coordinates on
u(1) @ u(1). According to the localization formula (5.1), R (&) is a rational function of the variables 1 := [u, v := Iv.
The numerator is a homogeneous degree two polynomial A1i> + Asiiv + A30%, with A ;j independent of 1; and the
denominator is V. As R1(§) € HO(B(U(1)2)), then Aj = A3 = 0, and R;(§) is independent of 1. That is, R is
constant on {£(1)};. But Karshon proved that the number of conjugacy classes of maximal tori in M is the smallest
integer greater than or equal to % (see [15]). That is, the characteristic number R; is not fine enough to analyze this
case.
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