Hamiltonian diffeomorphisms of toric manifolds and flag manifolds

Andrés Viña
Departamento de Física, Universidad de Oviedo, Avda Calvo Sotelo, 33007 Oviedo, Spain
Received 11 January 2006; received in revised form 3 July 2006; accepted 16 July 2006
Available online 17 August 2006

Abstract

If s and n are integers relatively prime and $\operatorname{Ham}\left(G_{s}\left(\mathbb{C}^{n}\right)\right)$ is the group of Hamiltonian symplectomorphisms of the Grassmannian manifold $G_{s}\left(\mathbb{C}^{n}\right)$, we prove that $\sharp \pi_{1}\left(\operatorname{Ham}\left(G_{s}\left(\mathbb{C}^{n}\right)\right)\right) \geq n$.

We prove that $\pi_{1}(\operatorname{Ham}(M))$ contains an infinite cyclic subgroup, when M is the one point blow up of $\mathbb{C} P^{3}$. We give a sufficient condition for the group $\pi_{1}(\operatorname{Ham}(M))$ to contain a subgroup isomorphic to \mathbb{Z}^{p}, when M is a general toric manifold.

(c) 2006 Elsevier B.V. All rights reserved.

MSC: 53D05; 57S05
Keywords: Hamiltonian diffeomorphisms; Symplectic fibrations; Toric manifolds

1. Introduction

Let (M, ω) be a closed symplectic $2 n$-manifold. $\operatorname{By} \operatorname{Ham}(M, \omega)$ is denoted the group of Hamiltonian symplectomorphisms of (M, ω) [21,25]. The homotopy type of $\operatorname{Ham}(M, \omega)$ is only completely known in a few particular cases [20,25]. When M is a surface, $\operatorname{Diff}_{0}(M)$ (the connected component of the identity map in the diffeomorphism group of M) is homotopy equivalent to the symplectomorphism group of M, hence the topology of the groups Ham (M) in dimension 2 can be deduced from the description of the diffeomorphism groups of surfaces given in [6] (see [25]). On the other hand, positivity of the intersections of J-holomorphic spheres in 4-manifolds played a crucial role in the proof of results about the homotopy type of $\operatorname{Ham}(M)$ when M is a ruled surface (see $[9,1$, 2]). But these arguments which work in dimension 2 or dimension 4 cannot be generalized to higher dimensions.

Using properties of the symplectic action on quantizable manifolds, in [27] we gave a lower bound for $\sharp \pi_{1}(\operatorname{Ham}(\mathcal{Q}))$, when \mathcal{Q} is a quantizable coadjoint orbit of a semisimple Lie group G and this orbit satisfies some technical hypotheses. By quite different methods McDuff and Tolman have proved the following result: if \mathcal{O} is a coadjoint orbit of the semisimple group G, and the action of G on \mathcal{O} is effective, then the inclusion $G \rightarrow \operatorname{Ham}(\mathcal{O})$ induces an injection on π_{1} [23]. This result answers a question posed in [29].

Here we give a new approach to determine lower bounds for $\sharp \pi_{1}(\operatorname{Ham}(\mathcal{O}))$. We will consider curves in G with initial point at e. Every family $\left\{g_{t} \mid t \in[0,1]\right\}$ of elements of G, with $g_{0}=e$ and $g_{1} \in Z(G)$ defines a loop ψ in the group $\operatorname{Ham}(\mathcal{O})$. We will use the Maslov index of the linearized flow to deduce conditions under which the loops

[^0]ψ and $\tilde{\psi}$, generated by the families g_{t} and \tilde{g}_{t} with different endpoints, are not homotopic. So our lower bounds for $\sharp \pi_{1}(\operatorname{Ham}(\mathcal{O}))$ will be no bigger than $\sharp Z(G)$.

In particular we consider the group $S U(n+1)$ and an orbit \mathcal{O} diffeomorphic to the Grassmannian $G_{s}\left(\mathbb{C}^{n+1}\right)$ of s-dimensional subspaces in \mathbb{C}^{n+1}, with s and $n+1$ relatively prime. For each element of $Z(S U(n+1))$ we will construct a curve g_{t} in $S U(n+1)$ such that the corresponding loops in $\operatorname{Ham}(\mathcal{O})$ relative to different elements of $Z(S U(n+1))$ have distinct Maslov indices. So these loops are homotopically inequivalent, and we have the following theorem.

Theorem 1. If \mathcal{O} is a coadjoint orbit of $S U(n+1)$ diffeomorphic to the Grassmannian $G_{s}\left(\mathbb{C}^{n+1}\right)$ with s and $n+1$ relatively prime, then

$$
\begin{equation*}
\sharp \pi_{1}(\operatorname{Ham}(\mathcal{O})) \geq n+1 . \tag{1.1}
\end{equation*}
$$

In [27] we gave a lower bound for $\sharp \pi_{1}(\operatorname{Ham}(\mathcal{Q}))$, when \mathcal{Q} is a quantizable coadjoint orbit. For the Grassmann manifolds to which the results of [27] are applicable, the bound given in [27] coincides with (1.1). However the results obtained here are more general, since now we do not assume that \mathcal{O} is quantizable. We also give a lower bound for $\sharp \pi_{1}(\operatorname{Ham}(\mathcal{O}))$ when \mathcal{O} is a coadjoint orbit of $S U(n+1)$ diffeomorphic to a general flag manifold in \mathbb{C}^{n+1}.

On the other hand, a loop ψ in the group $\operatorname{Ham}(M, \omega)$ determines a Hamiltonian fibration $E \xrightarrow{\pi} S^{2}$ with standard fibre M. On the total space E we can consider the first Chern class $c_{1}(V T E)$ of the vertical tangent bundle of E. Moreover on E is also defined the coupling class $c_{\psi} \in H^{2}(E, \mathbb{R})$ [11]. This class is determined by the following properties:
(i) $i_{q}^{*}\left(c_{\psi}\right)$ is the cohomology class of the symplectic structure on the fibre $\pi^{-1}(q)$, where i_{q} is the inclusion of $\pi^{-1}(q)$ in E and q is an arbitrary point of S^{2}.
(ii) $\left(c_{\psi}\right)^{n+1}=0$.

These canonical cohomology classes of E determine the characteristic number [19]

$$
\begin{equation*}
I_{\psi}=\int_{E} c_{1}(V T E) c_{\psi}^{n} \tag{1.2}
\end{equation*}
$$

I_{ψ} depends only on the homotopy class of ψ. Moreover I is an \mathbb{R}-valued group homomorphism on $\pi_{1}(\operatorname{Ham}(M, \omega))$, so the non-vanishing of I implies that the group $\pi_{1}(\operatorname{Ham}(M, \omega))$ is infinite. That is, I can be used to detect the infinitude of the corresponding homotopy group. Furthermore I calibrates the Hofer's norm v on $\pi_{1}(\operatorname{Ham}(M, \omega))$ in the sense that $v(\psi) \geq C\left|I_{\psi}\right|$, for all ψ, where C is a positive constant [25].

In [28] we gave an explicit expression for the value of the characteristic number I_{ψ}. This value can be calculated if one has a family of local symplectic trivializations of $T M$ at one's disposal, whose domains cover M and are fixed by the ψ_{t} 's (see Theorem 3 in [28]). In this paper we use this theorem of [28] to prove that $\pi_{1}(\operatorname{Ham}(M))$ contains an infinite cyclic subgroup, when M is the one point blow up of $\mathbb{C} P^{3}$. More precisely, in Section 3 we will prove the following result about the Hamiltonian group of the one point blow up of $\mathbb{C} P^{3}$.

Corollary 2. Let (M, ω) be the symplectic toric 6-manifold associated to the polytope obtained truncating the tetrahedron of \mathbb{R}^{3} with vertices $(0,0,0),(\tau, 0,0),(0, \tau, 0),(0,0, \tau)$ by a horizontal plane [10], then $\pi_{1}(\operatorname{Ham}(M, \omega))$ contains an infinite cyclic subgroup.

Using quite different techniques McDuff and Tolman proved this result in [24].
We also give a sufficient condition for $\pi_{1}(\operatorname{Ham}(M))$ to contain a subgroup isomorphic to \mathbb{Z}^{p}, when M is a general toric manifold. More precisely, let \mathbb{T} be the torus $\left(S^{1}\right)^{r}$, and $\mathfrak{t}=\mathbb{R} \oplus \cdots \oplus \mathbb{R}$ its Lie algebra. Given $w_{j} \in \mathbb{Z}^{r}$, with $j=1, \ldots, m$ and $\tau \in \mathbb{R}^{r}$ we put

$$
\begin{equation*}
M=\left\{z \in \mathbb{C}^{m}: \pi \sum_{j=1}^{m}\left|z_{j}\right|^{2} w_{j}=\tau\right\} / \mathbb{T} \tag{1.3}
\end{equation*}
$$

where the relation defined by \mathbb{T} is

$$
\begin{equation*}
\left(z_{j}\right) \simeq\left(z_{j}^{\prime}\right) \quad \text { iff } \quad \text { there is } \xi \in \mathfrak{t} \text { such that } z_{j}^{\prime}=z_{j} \mathrm{e}^{2 \pi \mathrm{i}\left(w_{j}, \xi\right\rangle} \text { for } j=1, \ldots, m \tag{1.4}
\end{equation*}
$$

We will assume that there is an open half space in \mathbb{R}^{r} which contains all the vectors w_{j} and that $\left\{w_{j}\right\}_{j}$ spans \mathbb{R}^{r}. We also assume that τ is a regular value of the map

$$
z \in \mathbb{C}^{m} \mapsto \pi \sum_{j=1}^{m}\left|z_{j}\right|^{2} w_{j} \in \mathbb{R}^{r}
$$

Then M is a closed toric manifold of dimension $2 n:=2(m-r)$ [22].
For $j=1, \ldots, m$ we put ${ }^{j} \psi_{t}$ for the symplectomorphism

$$
{ }^{j} \psi_{t}:[z] \in M \mapsto\left[z_{1}, \ldots, z_{j} \mathrm{e}^{2 \pi \mathrm{i} t}, \ldots, z_{m}\right] \in M .
$$

Let f_{j} be the corresponding normalized Hamiltonian and

$$
\begin{equation*}
\alpha_{j}:=\sum_{k=1}^{m}\left(\int_{\{[z]: z k=0\}} f_{j} \omega^{n-1}\right) . \tag{1.5}
\end{equation*}
$$

In Section 4 we will prove the following theorem.
Theorem 3. Let (M, ω) be the toric manifold defined by (1.3) and (1.4). If there are p numbers linearly independent over \mathbb{Z} in the set $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$, where α_{j} is defined by (1.5), then $\pi_{1}(\operatorname{Ham}(M, \omega))$ contains a subgroup isomorphic to \mathbb{Z}^{p}. (If $p=0$ we mean by \mathbb{Z}^{p} the trivial group.)

If (M, ω) is the toric manifold determined by the Delzant polytope $\Delta \subset \mathfrak{t}^{*}$, where T is an n-dimensional torus, we deduce a formula for the value of I on the Hamiltonian loops generated by the effective action of T on M. In this formula geometrical magnitudes relative of Δ and the generator of the loop are involved (Proposition 9).

We denote by $M_{H}:=E \operatorname{Ham}(M) \times_{\operatorname{Ham}(M)} M \rightarrow B \operatorname{Ham}(M)$ the universal bundle, with fibre M, over the classifying space $B \operatorname{Ham}(M)$. Let $\mathbf{c} \in H^{2}\left(M_{H}, \mathbb{R}\right)$ denote the coupling class [14]. If G is a compact Lie group and $\phi: G \rightarrow \operatorname{Ham}(M)$ be a group homomorphism, then ϕ induces a map $\Phi: B G \rightarrow B \operatorname{Ham}(M)$ between the corresponding classifying spaces. By means of this map the class \mathbf{c} induces a class $c_{\phi} \in H^{2}\left(M_{\phi}\right)$, where $M_{\phi}=E G \times_{G} M$. The class c_{ϕ} is in fact the coupling class of the Hamiltonian fibration $M_{\phi} \xrightarrow{p} B G$ [21]. Using c_{ϕ} and $c_{1}^{\phi}(T M)$, the G-equivariant first Chern class of $T M$, we define

$$
R_{i}(\phi):=p_{*}\left(\left(c_{1}^{\phi}(T M)\right)^{i}\left(c_{\phi}\right)^{n-i}\right),
$$

p_{*} being the integration along the fiber. The classes $R_{i}(\phi)$ were used in the paper [14] to study the cohomology of classifying spaces, and they are generalizations of the Miller-Morita-Mumford classes. Furthermore $R_{i}(\phi)$ can be calculated by the localization formula in G-equivariant cohomology.

In the set of all Lie group homomorphisms from G to $\operatorname{Ham}(M)$ we declare that two elements are equivalent if they are homotopic by means of a family of Lie group homomorphisms from G to $\operatorname{Ham}(M)$. The quotient set is denoted by $[G, \operatorname{Ham}(M)]_{g h}$. If ϕ and $\tilde{\phi}$ are two Hamiltonian G-actions on M which define the same element in $[G, \operatorname{Ham}(M)]_{g h}$, then $R_{i}(\phi)=R_{i}(\tilde{\phi})$. Thus, one has a numerical criterion for two Hamiltonian G-actions not to be equivalent under homotopies consisting of Hamiltonian G-actions. We will prove the existence of pairs of Hamiltonian circle actions in a Hirzebruch surface, which define the same element in $\pi_{1}(\mathrm{Ham})$ but its classes in $[U(1), \operatorname{Ham}(M)]_{g h}$ are not equal.

If $\mu: M \rightarrow \mathfrak{g}^{*}$ is a moment map for a G-action ϕ on M, we denote with Ω_{ϕ} the equivariant closed 2-form $\omega+\mu$ [13]. Given $Z \in \mathfrak{g}$ we denote by $\mathcal{R}_{\phi}(Z)$ the number

$$
\begin{equation*}
\mathcal{R}_{\phi}(Z):=(2 \pi \mathrm{i})^{-n} \int_{M} \mathrm{e}^{\mathrm{i} \Omega_{\phi}(Z)} . \tag{1.6}
\end{equation*}
$$

When $G=U(1)$ and μ is normalized, Ω_{ϕ} is a representative of the coupling class c_{ϕ}. If $X \in \mathfrak{g}$ generates a loop ϕ in $\operatorname{Ham}(\mathcal{O})$, where \mathcal{O} is a regular coadjoint orbit of G, then $\mathcal{R}_{\phi}(X)$ is the Fourier transform of the orbit and the Harish-Chandra Theorem (see [5]) allows us to calculate $\mathcal{R}_{\phi}(X)$ in terms of the root structure of \mathfrak{g}. Using this fact we give an example of two Hamiltonian circle actions on $\mathbb{C} P^{1}$ which define the same element in $\pi_{1}(\mathrm{Ham})$ but they are not homotopic by a family of circle actions.

The paper is organized as follows. In Section 2 we calculate the Maslov index of the linearized flow of certain loops in the Hamiltonian group of flag manifolds, and determine lower bound for the corresponding $\sharp \pi_{1}(\mathrm{Ham})$.

If M is the one point blow up of $\mathbb{C} P^{3}$, then M is a submanifold of $\mathbb{C} P^{1} \times \mathbb{C} P^{3}$, and the natural actions of $U(1)$ on the projective spaces define Hamiltonian loops ψ in M. Section 3 is concerned with the determination of I_{ψ} for these loops. As a consequence of these calculations we deduce that $\mathbb{Z} \subset \pi_{1}(\operatorname{Ham}(M))$.

In Section 4 we generalize the arguments developed in Section 3 to toric manifolds. From this generalization it follows a sufficient condition, stated in Theorem 3, for the existence of an infinite subgroup in $\pi_{1}(\operatorname{Ham}(M))$, when M is a toric manifold. Finally we check that this sufficient condition does not hold for $\mathbb{C} P^{n}$ with $n=1,2$. This is consistent with the fact that $\pi_{1}\left(\operatorname{Ham}\left(\mathbb{C} P^{n}\right)\right)$ is finite for $n=1,2$.

In Section 5 the $R_{i}(\phi)$ are introduced. If M is a Hirzebruch surface, the toric structure allows us to define two Hamiltonian S^{1}-actions $\phi, \tilde{\phi}$, which are not homotopic by means of a set of $U(1)$-actions, since $R_{1}(\phi) \neq R_{1}(\tilde{\phi})$. When M satisfies some additional hypotheses we will prove the existence of infinitely many pairs (ζ, ζ^{\prime}) of circle actions on M, such that $[\zeta]=\left[\zeta^{\prime}\right] \in \pi_{1}(\operatorname{Ham}(M))$, but $[\zeta] \neq\left[\zeta^{\prime}\right] \in[U(1) \text {, } \operatorname{Ham}(M)]_{g h}$.

Conventions. We use the following conventions. If f_{t} is a time-dependent Hamiltonian on (M, ω), the corresponding Hamiltonian vector Y_{t} is defined by

$$
\begin{equation*}
\iota_{Y_{t}} \omega=-\mathrm{d} f_{t} . \tag{1.7}
\end{equation*}
$$

This time-dependent vector field vector determines the respective family ψ_{t} of symplectomorphisms by

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \psi_{t}=Y_{t} \circ \psi_{t}, \quad \psi_{0}=\mathrm{id} \tag{1.8}
\end{equation*}
$$

If the group G acts on M and $X \in \mathfrak{g}$, by X_{M} is denoted the vector field whose value at $x \in M$ is

$$
\begin{equation*}
X_{M}(x)=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \mathrm{e}^{-t X} x \tag{1.9}
\end{equation*}
$$

If the action of G is Hamiltonian, a moment map $\mu: M \rightarrow \mathfrak{g}^{*}$ satisfies $\mathrm{d} \mu(X)=\iota_{X_{M}} \omega$. According to (1.7) and (1.8) the function $f:=\mu(X)$ defines the isotopy ϕ_{t}^{X} given by

$$
\begin{equation*}
\phi_{t}^{X}(x):=\mathrm{e}^{t X} x \tag{1.10}
\end{equation*}
$$

Given $E \rightarrow M$ is a G-equivariant bundle, s is a section of E and $X \in \mathfrak{g}$, we define the action of X on s as the section $X s$

$$
\begin{equation*}
(X s)(x)=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0}\left(\mathrm{e}^{t X}\right) \cdot s\left(\mathrm{e}^{-t X} x\right) \tag{1.11}
\end{equation*}
$$

2. Lower bounds for $\sharp \pi_{1}(\operatorname{Ham}(\mathcal{O}))$

2.1. Maslov index of the linearized flow

We denote by (M, ω) a closed, connected, symplectic, $2 n$-dimensional manifold. Let $\psi: \mathbb{R} / \mathbb{Z} \rightarrow \operatorname{Ham}(M, \omega)$ be a loop in the group of Hamiltonian symplectomorphisms at Id. Given $x \in M$, the curve $C:=\left\{\psi_{t}(x) \mid t \in[0,1]\right\}$ is null-homotopic [18]. Let S be a 2-dimensional singular disc in M whose boundary is C, and let $X_{1}, \ldots, X_{2 n}$ be vector fields on S which form a symplectic basis of $T_{p} M$ for each $p \in S$. Then

$$
\left(\psi_{t}\right)_{*}\left(X_{i}(x)\right)=\sum_{k} A_{i}^{k}(t, x) X_{k}\left(x_{t}\right),
$$

with $x_{t}:=\psi_{t}(x)$ and $A \in \operatorname{Sp}(2 n, \mathbb{R})$. By ρ will be denoted the usual map $\operatorname{Sp}(2 n, \mathbb{R}) \rightarrow U(1)$ which restricts to the determinant map on $U(n)$ [26]. Setting $a(t, x):=\rho(A(t, x))$, we write $J_{\psi}(X, x)$ for the winding number of the map $t \in \mathbb{R} / \mathbb{Z} \rightarrow a(t, x) \in U(1)$. That is,

$$
J_{\psi}(X, x)=\frac{1}{2 \pi \mathrm{i}} \int_{0}^{1} a^{-1} \frac{\partial a}{\partial t}(t, x) \mathrm{d} t .
$$

If N is the minimal Chern number of M on spheres, the class of $J_{\psi}(X, x)$ in $\mathbb{Z} / 2 N \mathbb{Z}$ only depends on the homotopy class of $[\psi]$. The element in $\mathbb{Z} / 2 N \mathbb{Z}$ defined by $J_{\psi}(X, x)$ will be denoted $J[\psi]$ and is the Maslov index of the flow $\psi_{t *}$.

2.2. Coadjoint orbits

Let G be a compact semisimple Lie group, and η an element of \mathfrak{g}^{*}, the dual of the Lie algebra of G. We denote by \mathcal{O} the coadjoint orbit of η equipped with the standard symplectic structure [17]. This orbit can be identified with G / G_{η}, where G_{η} is the stabilizer of η for the coadjoint action of G. The subgroup G_{η} contains a maximal torus T of G [12]. We have the decomposition of $\mathfrak{g}_{\mathbb{C}}$ as a direct sum of root spaces

$$
\mathfrak{g}_{\mathbb{C}}=\mathfrak{t}_{\mathbb{C}} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}
$$

with Φ the set of roots determined by T. We denote by $\check{\alpha} \in\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}\right]$ the coroot of α. Let \mathfrak{p} be the parabolic subalgebra

$$
\mathfrak{p}=\mathfrak{t}_{\mathbb{C}} \oplus \bigoplus_{\eta(i \tilde{\alpha}) \geq 0} \mathfrak{g}_{\alpha}
$$

By Z_{A} is denoted the right invariant vector field on G determined by $A \in \mathfrak{p}$. Since \mathfrak{p} is a subalgebra, $\left\{Z_{A} \mid A \in \mathfrak{p}\right\}$ defines an integrable distribution on G. Its projection onto G / G_{η} is a complex structure on the orbit \mathcal{O} compatible with the symplectic structure. If P is the parabolic subgroup of $G_{\mathbb{C}}$ generated by $\mathfrak{p}, G_{\mathbb{C}} / P$ is this complexification of $G / G_{\eta}=\mathcal{O}$, and

$$
T_{\eta}^{1,0} \simeq \mathfrak{g}_{\mathbb{C}} / \mathfrak{p} \simeq \bigoplus_{\alpha \in \Lambda} \mathfrak{g}_{\alpha}=: \mathfrak{n}
$$

where $\Lambda=\left\{\beta_{1}, \ldots, \beta_{r}\right\}$ is a subset of Φ. Let A_{1}, \ldots, A_{r} be a \mathbb{C}-basis for \mathfrak{n}, with $A_{j} \in \mathfrak{g}_{\beta_{j}}$, then $\left\{Z_{A_{j}}\right\}_{j}$ is a local frame for $T^{1,0} \mathcal{O}$ on a neighborhood U of η.

If $\left\{g_{t} \mid t \in[0,1]\right\}$ is a family of elements of G, such that $g_{0}=e$ and $g_{1} \in Z(G)$, then

$$
\left\{\psi_{t}: g G_{\eta} \in G / G_{\eta} \mapsto g_{t} g G_{\eta} \in G / G_{\eta}\right\}_{t \in[0,1]}
$$

is a loop in $\operatorname{Ham}(\mathcal{O})$. Furthermore

$$
\begin{equation*}
\left(\psi_{t}\right)_{*} Z_{A_{j}}=Z_{g_{t} \cdot A_{j}} \tag{2.1}
\end{equation*}
$$

with $g \cdot A:=\operatorname{Ad}_{g} A$.
Let $g_{t}=\exp \left(C_{t}\right)$, with $C_{t} \in \mathfrak{t}$ and $C_{0}=0$. As $\left[C_{t}, E\right]=\alpha\left(C_{t}\right) E$ if $E \in \mathfrak{g}_{\alpha}$, then we have

$$
\operatorname{Ad}_{g_{t}} A_{j}=\exp \left(\beta_{j}\left(C_{t}\right)\right) A_{j}
$$

It follows from (2.1) that for $v \in U$ the matrix of $\left(\psi_{t}\right)_{*}(\nu)$ with respect $\left\{Z_{A_{j}}\right\}_{j}$ is

$$
\operatorname{diag}\left(\mathrm{e}^{\beta_{1}\left(C_{t}\right)}, \ldots, \mathrm{e}^{\beta_{r}\left(C_{t}\right)}\right) \in U(r)
$$

The Maslov index $J[\psi]$ is the class in $\mathbb{Z} / 2 N \mathbb{Z}$ of the winding number of the map

$$
\begin{equation*}
t \in[0,1] \mapsto \exp \left(\sum_{j=1}^{r} \beta_{j}\left(C_{t}\right)\right)=\exp \left(\sum_{\alpha \in \Lambda} \alpha\left(C_{t}\right)\right) \in U(1) . \tag{2.2}
\end{equation*}
$$

That is,

$$
J[\psi]=\frac{1}{2 \pi \mathrm{i}} \sum_{\alpha \in \Lambda} \alpha\left(C_{1}\right)+2 N \mathbb{Z} .
$$

We have the following proposition.

Proposition 4. Let \mathcal{O} be a coadjoint orbit of G whose complexification is $G_{\mathbb{C}} / P$, with $\mathfrak{g}_{\mathbb{C}} / \mathfrak{p} \simeq \bigoplus_{\alpha \in \Lambda} \mathfrak{g}_{\alpha}$. Let $\left\{C_{t}\right\}_{t \in[0,1]}$ be a curve in \mathfrak{t} such that $C_{0}=0$ and $\exp \left(C_{1}\right) \in Z(G)$. If

$$
\frac{1}{2 \pi \mathrm{i}} \sum_{\alpha \in \Lambda} \alpha\left(C_{1}\right) \notin 2 N \mathbb{Z}
$$

then $g_{t}=\exp \left(C_{t}\right)$ defines a nontrivial element in $\pi_{1}(\operatorname{Ham}(\mathcal{O}))$.

2.3. Flag manifolds in \mathbb{C}^{n+1}

From now to the end of Section $2 G$ will be the group $S U(n+1)$, and T the subgroup of diagonal elements. We denote by Δ the usual base of roots; that is, $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$, where $\alpha_{i}=\epsilon_{i}-\epsilon_{i+1}$ (we use the notation of [8]). Each subset $I \subset \Delta$ determines a parabolic subgroup P_{I} of $S L(n+1, \mathbb{C})$. This subgroup is generated by the subalgebra

$$
\mathfrak{p}_{I}=\mathfrak{t}_{\mathbb{C}} \oplus \bigoplus_{\alpha \in \tilde{I}} \mathfrak{g}_{\alpha}
$$

where \tilde{I} consists of all roots that can be written as sums of negative elements in I together with all positive roots [7]. If $I=\Delta-\left\{\alpha_{n}\right\}$, then $\mathfrak{p}_{I}=\mathfrak{g l} l(n, \mathbb{C})$ and $\mathfrak{s l}(n+1, \mathbb{C}) / \mathfrak{p}_{I}$ is isomorphic

$$
\bigoplus_{j=1}^{n} \mathfrak{g}_{\beta_{j}}=\mathfrak{n}
$$

with $\beta_{j}=\epsilon_{n+1}-\epsilon_{j}$. In this case

$$
S L(n+1, \mathbb{C}) / P_{I} \simeq S U(n+1) / U(n)=\mathbb{C} P^{n} .
$$

Next we will determine a lower bound for $\sharp \pi_{1}(\operatorname{Ham}(\mathcal{O}))$, when \mathcal{O} is a coadjoint orbit of $S U(n+1)$ diffeomorphic to $\mathbb{C} P^{n}$. Let us take a complex number z such that $z^{n+1}=1$, and put

$$
g_{t}:=\operatorname{diag}\left(z^{t}, \ldots, z^{t}, z^{-n t}\right) \in T \subset S U(n+1) .
$$

So $g_{1} \in Z(S U(n+1))$, and moreover $g_{t}=\exp \left(C_{t}\right)$, with

$$
\begin{equation*}
C_{t}=\frac{2 k \pi \mathrm{i} t}{n+1} \operatorname{diag}(1, \ldots, 1,-n) \tag{2.3}
\end{equation*}
$$

where k is any element of $\{0,1, \ldots, n\}$. Then $\left(\epsilon_{n+1}-\epsilon_{j}\right)\left(C_{t}\right)=-2 k \pi t \mathrm{i}$, and in this case the map (2.2) is

$$
t \in[0,1] \mapsto \exp (-2 k n \pi t \mathrm{i}) \in U(1)
$$

whose winding number is $-k n$. Hence, for $k=0,1, \ldots, n$ we obtain loops $\left\{_{k} \psi_{t} \mid t \in[0,1]\right\}$ in $\operatorname{Ham}(\mathcal{O})$ such that the corresponding Maslov indices take the values

$$
J\left[{ }_{k} \psi\right]=-k n+2 N \mathbb{Z}
$$

The minimal Chern number of $\mathbb{C} P^{n}$ is equal to $n+1$. As $-k n+2(n+1) \mathbb{Z} \neq-j n+2(n+1) \mathbb{Z}$ for $k \neq j \in\{0,1, \ldots n\}$, then $\left[{ }_{k} \psi\right] \neq\left[{ }_{j} \psi\right] \in \pi_{1}(\operatorname{Ham}(\mathcal{O}))$. We have proved the following theorem.

Theorem 5. If \mathcal{O} is a coadjoint orbit of $S U(n+1)$ diffeomorphic to $\mathbb{C} P^{n}$, then $\sharp \pi_{1}(\operatorname{Ham}(\mathcal{O})) \geq n+1$.
It is known that $\pi_{1}\left(\operatorname{Ham}\left(\mathbb{C} P^{1}\right)\right)=\mathbb{Z} / 2 \mathbb{Z}$ and that $\operatorname{Ham}\left(\mathbb{C} P^{2}\right)$ has the homotopy type of $P U(3)$ [9], so $\sharp \pi_{1}\left(\operatorname{Ham}\left(\mathbb{C} P^{2}\right)\right)=3$. The bound given in Theorem 5 is compatible with those facts.
Proof of Theorem 1. Now we consider coadjoint orbits of $S U(n+1)$ which are diffeomorphic to the Grassmannian $G_{s}\left(C^{n+1}\right)$ of s-dimensional subspaces of \mathbb{C}^{n+1}. Let \mathfrak{p} be the parabolic subalgebra generated by $I=\Delta-\left\{\alpha_{s}\right\}$; that is, we delete the s-node in the Dynkin diagram. (If $s=n$, the corresponding Grassmannian is $\mathbb{C} P^{n}$.) Now

$$
\mathfrak{s l}(n+1, \mathbb{C}) / \mathfrak{p}=\bigoplus_{\beta} \mathfrak{g}_{\beta}
$$

with $\beta=\epsilon_{j}-\epsilon_{i}, j=s+1, \ldots, n+1$ and $i=1, \ldots, s$.

With the above notations $\left(\epsilon_{j}-\epsilon_{i}\right)\left(C_{t}\right)=0$ for any i, j with $j \neq n+1$. Now the map (2.2) is

$$
t \in[0,1] \mapsto \exp (-2 k s t \pi \mathrm{i}) \in U(1)
$$

and its winding number is $-k s$. The minimal Chern number N for the Grassmannian $G_{s}\left(\mathbb{C}^{n+1}\right)$ is $n+1$. If s and $n+1$ are relatively prime then

$$
\sharp\{-k s+2(n+1) \mathbb{Z} \mid k=0,1, \ldots n\}=n+1 .
$$

Given \mathfrak{p} a parabolic subalgebra of $\mathfrak{l l}(n+1, \mathbb{C})$ which contains the standard Borel subalgebra, then

$$
\mathfrak{s l}(n+1, \mathbb{C}) / \mathfrak{p} \simeq \bigoplus_{\beta \in \Lambda} \mathfrak{g}_{\beta}
$$

where $\Lambda=\Phi \backslash \tilde{I}$.
Given $a \in\{1, \ldots, n+1\}$ we put

$$
\begin{equation*}
\langle a\rangle=\sharp\left\{\beta=\epsilon_{i}-\epsilon_{a} \in \Lambda\right\}-\sharp\left\{\beta=\epsilon_{a}-\epsilon_{j} \in \Lambda\right\} . \tag{2.4}
\end{equation*}
$$

Let $C_{t}(a)$ be the element of \mathfrak{t} defined by

$$
\begin{equation*}
C_{t}(a)=\frac{2 k \pi \mathrm{i} t}{n+1} \operatorname{diag}(1, \ldots, 1,-n, 1, \ldots, 1) \tag{2.5}
\end{equation*}
$$

where $-n$ is in the position a. The element C_{t} in (2.3) is equal to $C_{t}(n+1)$. We consider the curve $g_{t}=\exp \left(C_{t}(a)\right)$, then

$$
\sum_{\beta \in \Lambda} \beta\left(C_{t}(a)\right)=2 k \mathrm{i} t\langle a\rangle,
$$

and the winding number of the map $t \mapsto \exp \sum \beta\left(C_{t}(a)\right)$ is $k\langle a\rangle$. Hence

$$
\sharp \pi_{1}(\operatorname{Ham}(S L(n+1, \mathbb{C}) / P)) \geq \sharp\{k\langle a\rangle+2 N \mathbb{Z} \mid k=0,1, \ldots, n\} .
$$

So one arrives at the following result.
Theorem 6. If \mathcal{O} is a coadjoint orbit of $S U(n+1)$ diffeomorphic to the flag manifold $S L(n+1, \mathbb{C}) / P$, then

$$
\sharp \pi_{1}(\operatorname{Ham}(\mathcal{O})) \geq \max _{a=1, \ldots, n+1}(\sharp\{k\langle a\rangle+2 N \mathbb{Z} \mid k=0,1, \ldots, n\}),
$$

where the integer $\langle a\rangle$ is defined by the parabolic subalgebra \mathfrak{p} by (2.4).

3. Hamiltonian group of the one point blow up of $\mathbb{C} P^{3}$

Given $\tau, \sigma \in \mathbb{R}_{>0}$, with $\sigma<\tau$, let M be the following manifold

$$
\begin{equation*}
M=\left\{z \in \mathbb{C}^{5}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}+\left|z_{5}\right|^{2}=\tau / \pi,\left|z_{3}\right|^{2}+\left|z_{4}\right|^{2}=\sigma / \pi\right\} / \mathbb{T}, \tag{3.1}
\end{equation*}
$$

where the action of $\mathbb{T}=\left(S^{1}\right)^{2}$ is defined by

$$
\begin{equation*}
(a, b)\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right)=\left(a z_{1}, a z_{2}, a b z_{3}, b z_{4}, a z_{5}\right) \tag{3.2}
\end{equation*}
$$

for $a, b \in S^{1}$.
M is a toric 6-manifold; more precisely, it is the toric manifold associated to the polytope obtained truncating the tetrahedron of \mathbb{R}^{3} with vertices

$$
(0,0,0),(\tau, 0,0),(0, \tau, 0),(0,0, \tau)
$$

by a horizontal plane through the point $(0,0, \lambda)$, with $\lambda:=\tau-\sigma[10]$.

For $0 \neq z_{j} \in \mathbb{C}$ we put $z_{j}=\rho_{j} \mathrm{e}^{\mathrm{i} \theta_{j}}$, with $\left|z_{j}\right|=\rho_{j}$. On the set of points $[z] \in M$ with $z_{i} \neq 0$ for all i one can consider the coordinates

$$
\begin{equation*}
\left(\frac{\rho_{1}^{2}}{2}, \varphi_{1}, \frac{\rho_{2}^{2}}{2}, \varphi_{2}, \frac{\rho_{3}^{2}}{2}, \varphi_{3}\right) \tag{3.3}
\end{equation*}
$$

where the angle coordinates are defined by

$$
\begin{equation*}
\varphi_{1}=\theta_{1}-\theta_{5}, \quad \varphi_{2}=\theta_{2}-\theta_{5}, \quad \varphi_{3}=\theta_{3}-\theta_{4}-\theta_{5} . \tag{3.4}
\end{equation*}
$$

Then the standard symplectic structure on \mathbb{C}^{5} induces the following form ω on this part of M

$$
\begin{equation*}
\omega=\sum_{j=1}^{3} \mathrm{~d}\left(\frac{\rho_{j}^{2}}{2}\right) \wedge \mathrm{d} \varphi_{j} . \tag{3.5}
\end{equation*}
$$

3.1. Darboux coordinates on M

Let $0<\epsilon \ll 1$, we write

$$
B_{0}=\left\{[z] \in M:\left|z_{j}\right|>\epsilon, \text { for all } j\right\} .
$$

For each $j \in\{1,2,3,4,5\}$ we set

$$
B_{j}=\left\{[z] \in M:\left|z_{j}\right|<2 \epsilon \text { and }\left|z_{i}\right|>\epsilon, \text { for all } i \neq j\right\} .
$$

The family B_{0}, \ldots, B_{5} is not a covering of M, but if $[z] \notin \cup B_{k}$, then there are i, j, with $i \neq j$ and $\left|z_{i}\right| \leq \epsilon \geq\left|z_{j}\right|$.
We will define Darboux coordinates on B_{0}, \ldots, B_{5}. On B_{0} we will consider the well-defined Darboux coordinates (3.3).

On $B_{1}, \rho_{j} \neq 0$ for $j \neq 1$; so the angle coordinates φ_{2} and φ_{3} of (3.4) are well-defined. We define x_{1}, y_{1} by the relation $x_{1}+\mathrm{i} y_{1}:=\rho_{1}{ }^{\mathrm{i} \varphi_{1}}$ and $x_{1}=0=y_{1}$, if $z_{1}=0$. In this way we take as symplectic coordinates on B_{1}

$$
\left(x_{1}, y_{1}, \frac{\rho_{2}^{2}}{2}, \varphi_{2}, \frac{\rho_{3}^{2}}{2}, \varphi_{3}\right) .
$$

We will also consider the following Darboux coordinates: On B_{2}

$$
\left(\frac{\rho_{1}^{2}}{2}, \varphi_{1}, x_{2}, y_{2}, \frac{\rho_{3}^{2}}{2}, \varphi_{3}\right), \quad \text { with } x_{2}+\mathrm{i} y_{2}:=\rho_{2} \mathrm{e}^{\mathrm{i} \varphi_{2}} ; \text { and } x_{2}=0=y_{2}, \text { if } z_{2}=0
$$

On B_{3}

$$
\left(\frac{\rho_{1}^{2}}{2}, \varphi_{1}, \frac{\rho_{2}^{2}}{2}, \varphi_{2}, x_{3}, y_{3}\right), \quad \text { where } x_{3}+\mathrm{i} y_{3}:=\rho_{3} \mathrm{e}^{\mathrm{i} \varphi_{3}} .
$$

On B_{4}

$$
\left(\frac{\rho_{1}^{2}}{2}, \varphi_{1}, \frac{\rho_{2}^{2}}{2}, \varphi_{2}, x_{4}, y_{4}\right), \quad \text { with } x_{4}+\mathrm{i} y_{4}:=\rho_{4} \mathrm{e}^{\mathrm{i} \varphi_{4}} \text { and } \varphi_{4}=\theta_{4}-\theta_{3}+\theta_{5} .
$$

On B_{5}

$$
\left(x_{5}, y_{5}, \frac{\rho_{2}^{2}}{2}, \chi_{2}, \frac{\rho_{3}^{2}}{2}, \chi_{3}\right),
$$

where

$$
x_{5}+\mathrm{i} y_{5}:=\rho_{5} \mathrm{e}^{\mathrm{i} \chi_{5}}, \quad \chi_{2}=\theta_{2}-\theta_{1}, \quad \chi_{3}=\theta_{3}-\theta_{1}-\theta_{4}, \quad \chi_{5}=\theta_{5}-\theta_{1} .
$$

If $\left[z_{1}, \ldots, z_{5}\right]$ is a point of

$$
M \backslash \bigcup_{i=0}^{5} B_{i}
$$

then there are $a \neq b \in\{1, \ldots, 5\}$ such that $\left|z_{a}\right|,\left|z_{b}\right| \leq \epsilon$. We can cover the set $M \backslash \bigcup B_{i}$ by Darboux charts denoted B_{6}, \ldots, B_{q} similar to the preceding B_{i} 's satisfying the following condition. The image of each B_{a}, with $a=6, \ldots, q$, is contained in a prism of \mathbb{R}^{6} of the form

$$
\prod_{i=1}^{6}\left[c_{i}, d_{i}\right]
$$

where at least two intervals $\left[c_{i}, d_{i}\right]$ have length of order ϵ.
By the infinitesimal "size" of the B_{j}, for $j \geq 1$, it turns out

$$
\begin{equation*}
\int_{B_{j}} \omega^{3}=O(\epsilon), \quad \text { for } j \geq 1 \tag{3.6}
\end{equation*}
$$

3.2. A loop in $\operatorname{Ham}(M)$

Let ψ_{t} be the symplectomorphism of M defined by

$$
\begin{equation*}
\psi_{t}[z]=\left[z_{1} \mathrm{e}^{2 \pi \mathrm{i} t}, z_{2}, z_{3}, z_{4}, z_{5}\right] \tag{3.7}
\end{equation*}
$$

Then $\left\{\psi_{t}\right\}_{t}$ is a loop in the group $\operatorname{Ham}(M)$ of Hamiltonian symplectomorphisms of M. By f is denoted the corresponding normalized Hamiltonian function. Hence $f=\pi \rho_{1}^{2}-\kappa$ with $\kappa \in \mathbb{R}$ such that $\int_{M} f \omega^{3}=0$.

We will calculate I_{ψ} using the following result proved in [28] (Theorem 3 of [28]).
Theorem 7. Let $\psi: S^{1} \rightarrow \operatorname{Ham}(M, \omega)$ be a closed Hamiltonian isotopy generated by the normalized timedependent Hamiltonian f_{t}. If $\left\{B_{1}, \ldots, B_{m}\right\}$ is a set of symplectic trivializations for $T M$ which covers M and such that $\psi_{t}\left(B_{j}\right)=B_{j}$, for all t and all j, then

$$
\begin{equation*}
I_{\psi}=\sum_{i=1}^{m} J_{i} \int_{B_{i} \backslash \bigcup_{j<i} B_{j}} \omega^{n}+\sum_{i<k} N_{i k}, \tag{3.8}
\end{equation*}
$$

where

$$
N_{i k}=n \frac{\mathrm{i}}{2 \pi} \int_{S^{1}} \mathrm{~d} t \int_{A_{i k}}\left(f_{t} \circ \psi_{t}\right)\left(\mathrm{d} \log r_{i k}\right) \wedge \omega^{n-1}
$$

$A_{i k}=\left(\partial B_{i} \backslash \cup_{r<k} B_{r}\right) \cap B_{k}, J_{i}$ is the Maslov index of $\left(\psi_{t}\right)_{*}$ in the trivialization B_{i} and $r_{i k}$ the corresponding transition function of $\operatorname{det}(T M)$.

We will prove that, in the case we are considering, some summands in (3.8) are of order ϵ. We will neglect the order ϵ summands, and in this way we will obtain an expression which is equal to I_{ψ} up to an addend of order ϵ.

In the coordinates (3.3) of B_{0}, ψ_{t} is the map $\varphi_{1} \mapsto \varphi_{1}+2 \pi t$. So the Maslov index $J_{B_{0}}=0$. It follows from (3.6) and Theorem 7

$$
\begin{equation*}
I_{\psi}=\sum_{i<k} N_{i k}+O(\epsilon), \tag{3.9}
\end{equation*}
$$

with

$$
N_{i k}=\frac{3 \mathrm{i}}{2 \pi} \int_{A_{i k}} f \mathrm{~d} \log r_{i k} \wedge \omega^{2}
$$

If $[z] \in A_{i k} \subset \partial B_{i} \cap B_{k}$, with $1 \leq i<k$, then at least the modules $\left|z_{a}\right|$ and $\left|z_{b}\right|$ of two components of $[z]$ are of order ϵ; so $N_{i k}$ is of order ϵ when $1 \leq i<k$. Analogously $N_{0 k}$ is of order ϵ, for $k=6, \ldots, q$. Hence (3.9) reduces to

$$
\begin{equation*}
I_{\psi}=\sum_{k=1}^{5} N_{0 k}+O(\epsilon) \tag{3.10}
\end{equation*}
$$

If we put

$$
\begin{equation*}
N_{0 k}^{\prime}=\frac{3 \mathrm{i}}{2 \pi} \int_{A_{0 k}^{\prime}} f \mathrm{~d} \log r_{i k} \wedge \omega^{2} \tag{3.11}
\end{equation*}
$$

with

$$
A_{0 k}^{\prime}=\left\{[z] \in M:\left|z_{k}\right|=\epsilon,\left|z_{r}\right|>\epsilon \text { for all } r \neq k\right\}
$$

then

$$
N_{0 k}=N_{0 k}^{\prime}+O(\epsilon)
$$

and

$$
\begin{equation*}
I_{\psi}=\sum_{k=1}^{5} N_{0 k}^{\prime}+O(\epsilon) \tag{3.12}
\end{equation*}
$$

3.3. Calculation of the $N_{0 k}^{\prime}$'s

First we determine the value of N_{01}^{\prime}. To know the transition function r_{01} one needs the Jacobian matrix R of the transformation

$$
\left(x_{1}, y_{1}, \frac{\rho_{2}^{2}}{2}, \varphi_{2}, \frac{\rho_{3}^{2}}{2}, \varphi_{3}\right) \rightarrow\left(\frac{\rho_{1}^{2}}{2}, \varphi_{1}, \frac{\rho_{2}^{2}}{2}, \varphi_{2}, \frac{\rho_{3}^{2}}{2}, \varphi_{3}\right)
$$

in the points of A_{01}^{\prime}; where $\rho_{1}^{2}=x_{1}^{2}+y_{1}^{2}, \varphi_{1}=\tan ^{-1}\left(y_{1} / x_{1}\right)$. The function $r_{01}=\rho(R)$, where $\rho: \operatorname{Sp}(6, \mathbb{R}) \rightarrow U(1)$ is the map which restricts to the determinant on $U(3)$ [26]. The non-trivial block of R is the diagonal one

$$
\left(\begin{array}{cc}
x_{1} & y_{1} \\
r & s
\end{array}\right)
$$

with $r=-y_{1}\left(x_{1}^{2}+y_{1}^{2}\right)^{-1}$ and $s=x_{1}\left(x_{1}^{2}+y_{1}^{2}\right)^{-1}$. The non-real eigenvalues of R are

$$
\lambda_{ \pm}=\frac{x_{1}+s}{2} \pm \frac{\mathrm{i} \sqrt{4-\left(s+x_{1}\right)^{2}}}{2}
$$

These non-real eigenvalues occur when $\left(s+x_{1}\right)^{2}<2$. On A_{01}^{\prime} this condition is equivalent to $\left|\cos \varphi_{1}\right|<2 \epsilon\left(\epsilon^{2}+\right.$ 1) ${ }^{-1}=: \delta$, since $\rho_{1}=\epsilon$ for the points of A_{01}^{\prime}.

If $y_{1}>0$ then λ_{-}of the first kind (see [26]) and λ_{+}is of the first kind if $y_{1}<0$. Hence, on A_{01}^{\prime},

$$
\rho(R)= \begin{cases}\lambda_{+}\left|\lambda_{+}\right|^{-1}=x+\mathrm{i} y, & \text { if }\left|\cos \varphi_{1}\right|<\delta \text { and } y_{1}<0 \\ \lambda_{-}\left|\lambda_{-}\right|^{-1}=x-\mathrm{i} y, & \text { if }\left|\cos \varphi_{1}\right|<\delta \text { and } y_{1}>0 \\ \pm 1, & \text { otherwise }\end{cases}
$$

where $x=\delta^{-1} \cos \varphi_{1}$, and $y=\sqrt{1-x^{2}}$.
If we put $\rho(R)=\mathrm{e}^{\mathrm{i} \gamma}$ then, for the points of A_{01}^{\prime} in which $\left|\cos \varphi_{1}\right|<\delta$,

$$
\cos \gamma=\delta^{-1} \cos \varphi_{1}, \quad \text { and } \quad \sin \gamma= \begin{cases}-\sqrt{1-\cos ^{2} \gamma}, & \text { if } \sin \varphi_{1}>0 \\ \sqrt{1-\cos ^{2} \gamma}, & \text { if } \sin \varphi_{1}<0\end{cases}
$$

So, when φ_{1} runs anticlockwise from 0 to $2 \pi, \gamma$ goes round the circumference clockwise; that is, $\gamma=h\left(\varphi_{1}\right)$, where h is a function such that

$$
\begin{equation*}
h(0)=2 \pi, \quad \text { and } \quad h(2 \pi)=0 . \tag{3.13}
\end{equation*}
$$

As $r_{01}=\rho(R)$, then $\mathrm{d} \log r_{01}=\mathrm{id} h$.
On A_{01}^{\prime} the symplectic form (3.5) reduces to (1/2) $\left(\mathrm{d} \rho_{2}^{2} \wedge \mathrm{~d} \varphi_{2}+\mathrm{d} \rho_{3}^{2} \wedge \mathrm{~d} \varphi_{3}\right)$. From (3.11) one deduces

$$
\begin{equation*}
N_{01}^{\prime}=\frac{3 \mathrm{i}}{4 \pi} \int_{A_{01}^{\prime}} \mathrm{i} f \frac{\partial h}{\partial \varphi_{1}} \mathrm{~d} \varphi_{1} \wedge \mathrm{~d} \rho_{2}^{2} \wedge \mathrm{~d} \varphi_{2} \wedge \mathrm{~d} \rho_{3}^{2} \wedge \mathrm{~d} \varphi_{3} . \tag{3.14}
\end{equation*}
$$

The submanifold A_{01}^{\prime} is oriented as a subset of ∂B_{0} and the orientation of B_{0} is the one defined by ω^{3}, that is, by

$$
\mathrm{d} \rho_{1}^{2} \wedge \mathrm{~d} \varphi_{1} \wedge \mathrm{~d} \rho_{2}^{2} \wedge \mathrm{~d} \varphi_{2} \wedge \mathrm{~d} \rho_{3}^{2} \wedge \mathrm{~d} \varphi_{3}
$$

Since $\rho_{1}>\epsilon$ for the points of B_{0}, then A_{01}^{\prime} is oriented by $-\mathrm{d} \varphi_{1} \wedge \mathrm{~d} \varphi_{2}^{2} \wedge \mathrm{~d} \varphi_{2} \wedge \mathrm{~d} \rho_{3}^{2} \wedge \mathrm{~d} \varphi_{3}$. On the other hand, the Hamiltonian function $f=-\kappa+O(\epsilon)$ on A_{01}^{\prime}. Then it follows from (3.14) together with (3.13)

$$
N_{01}^{\prime}=6 \pi^{2} \kappa \int_{0}^{\sigma / \pi} \mathrm{d} \rho_{3}^{2} \int_{0}^{\tau / \pi-\rho_{3}^{2}} \mathrm{~d} \rho_{2}^{2}+O(\epsilon)
$$

that is,

$$
\begin{equation*}
N_{01}^{\prime}=3 \kappa\left(\tau^{2}-\lambda^{2}\right)+O(\epsilon) \tag{3.15}
\end{equation*}
$$

The contributions $N_{02}^{\prime}, N_{03}^{\prime}, N_{04}^{\prime}, N_{05}^{\prime}$ to (3.12) can be calculated in a similar way. One obtains the following results up to addends of order ϵ

$$
\begin{equation*}
N_{02}^{\prime}=N_{05}^{\prime}=-\left(\tau^{3}-\lambda^{3}\right)+3 \kappa\left(\tau^{2}-\lambda^{2}\right), \quad N_{03}^{\prime}=\tau^{2}(3 \kappa-\tau), \quad N_{04}^{\prime}=\lambda^{2}(3 \kappa-\lambda) . \tag{3.16}
\end{equation*}
$$

As I_{ψ} is independent of ϵ, it follows from (3.12), (3.15) and (3.16)

$$
\begin{equation*}
I_{\psi}=6 \kappa\left(2 \tau^{2}-\lambda^{2}\right)+\lambda^{3}-3 \tau^{3} \tag{3.17}
\end{equation*}
$$

On the other hand, straightforward calculations give

$$
\int_{M} \omega^{3}=\left(\tau^{3}-\lambda^{3}\right), \quad \text { and } \quad \int_{M} \pi \rho_{1}^{2} \omega^{3}=\frac{1}{4}\left(\tau^{4}-\lambda^{4}\right) .
$$

So

$$
\begin{equation*}
\kappa=\frac{1}{4}\left(\frac{\tau^{4}-\lambda^{4}}{\tau^{3}-\lambda^{3}}\right) . \tag{3.18}
\end{equation*}
$$

It follows from (3.17) and (3.18)

$$
\begin{equation*}
I_{\psi}=\frac{\lambda^{2}\left(-3 \tau^{4}+8 \tau^{3} \lambda-6 \tau^{2} \lambda^{2}+\lambda^{4}\right)}{2\left(\tau^{3}-\lambda^{3}\right)} \tag{3.19}
\end{equation*}
$$

Hence I_{ψ} is a rational function of τ and λ. It is easy to check that its numerator does not vanish for $0<\lambda<\tau$. So we have proved the following proposition.

Proposition 8. If ψ is the closed Hamiltonian isotopy defined in (3.7), then the characteristic number $I_{\psi} \neq 0$.
Proof of Corollary 2. By Proposition $8 I_{\psi} \neq 0$. As I is a group homomorphism on $\pi_{1}(\operatorname{Ham}(M, \omega))$, then the class $\left[\psi^{l}\right] \in \pi_{1}(\operatorname{Ham}(M, \omega))$ does not vanish, for all $l \in \mathbb{Z} \backslash\{0\}$.

4. Hamiltonian group of toric manifolds

In this section we generalize the calculations carried out in Section 3 for the 6 -manifold one point blow up of $\mathbb{C} P^{3}$ to a general toric manifold. Now (M, ω) will denote the toric manifold defined by (1.3) and (1.4).

When $0 \neq z_{b} \in \mathbb{C}$, we write $z_{b}=\rho_{b} \mathrm{e}^{\mathrm{i} \theta_{b}}$. The standard symplectic form on \mathbb{C}^{m} gives rise to the symplectic structure ω on M. On

$$
\left\{[z] \in M: z_{j} \neq 0 \text { for all } j\right\}
$$

ω can be written as in (3.5)

$$
\omega=\sum_{i=1}^{n} \mathrm{~d}\left(\frac{\rho_{a i}^{2}}{2}\right) \wedge \mathrm{d} \varphi_{a i},
$$

with $\varphi_{a i}$ a linear combination of the θ_{c} 's.
Given $0<\epsilon \ll 1$, we set

$$
\begin{aligned}
& B_{0}=\left\{[z] \in M:\left|z_{j}\right|>\epsilon \text { for all } j\right\} \\
& B_{k}=\left\{[z] \in M:\left|z_{k}\right|<2 \epsilon,\left|z_{j}\right|>\epsilon \text { for all } j \neq k\right\},
\end{aligned}
$$

as in Section 3. On B_{0} we will consider the Darboux coordinates

$$
\left\{\frac{\rho_{a i}^{2}}{2}, \varphi_{a i}\right\}_{i=1, \ldots, n}
$$

Given $k \in\{1, \ldots, m\}$ we write ω in the form

$$
\omega=\mathrm{d}\left(\frac{\rho_{k}^{2}}{2}\right) \wedge \mathrm{d} \varphi_{k}+\sum_{i=1}^{n-1} \mathrm{~d}\left(\frac{\rho_{k i}^{2}}{2}\right) \wedge \mathrm{d} \varphi_{k i}
$$

where φ_{k} and $\varphi_{k i}$ are linear combinations of the θ_{c} 's. Then we consider on B_{k} the following Darboux coordinates

$$
\left\{x_{k}, y_{k}, \frac{\rho_{k i}^{2}}{2}, \varphi_{k i}\right\}_{i=1, \ldots, n-1}
$$

with x_{k}, y_{k} defined by $x_{k}+\mathrm{i} y_{k}:=\rho_{k} \mathrm{e}^{\mathrm{i} \varphi_{k}}$, if $z_{k} \neq 0$ and $x_{k}=0=y_{k}$, if $z_{k}=0$.
We denote by ψ_{t} the map

$$
\psi_{t}:[z] \in M \mapsto\left[z_{1} \mathrm{e}^{2 \pi \mathrm{i} t}, z_{2}, \ldots, z_{m}\right] \in M
$$

$\left\{\psi_{t}: t \in[0,1]\right\}$ is a loop in $\operatorname{Ham}(M)$. By repeating the arguments of Section 3 one obtains

$$
I_{\psi}=\sum_{k=1}^{m} N_{0 k}^{\prime}+O(\epsilon)
$$

where

$$
\begin{aligned}
& N_{0 k}^{\prime}=\frac{n \mathrm{i}}{2 \pi} \int_{A_{0 k}^{\prime}} f \mathrm{~d} \log r_{0 k} \wedge \omega^{n-1}, \\
& A_{0 k}^{\prime}=\left\{[z] \in M:\left|z_{k}\right|=\epsilon,\left|z_{j}\right|>\epsilon \text { for all } j \neq k\right\}
\end{aligned}
$$

and $f=\pi \rho_{1}^{2}-\kappa_{1}$, with

$$
\int_{M} \pi \rho_{1}^{2} \omega^{n}=\kappa_{1} \int_{M} \omega^{n}
$$

As in Section 3, on $A_{0 k}^{\prime}$ the exterior derivative $\mathrm{d} \log r_{0 k}=\mathrm{i} h^{\prime}\left(\varphi_{k}\right) \mathrm{d} \varphi_{k}$, where $h=h\left(\varphi_{k}\right)$ is a function such that $h(0)=2 \pi, h(2 \pi)=0$. Then

$$
N_{0 k}^{\prime}=-n \int_{\{[z]: z k=0\}} f \omega^{n-1}+O(\epsilon),
$$

where $\left\{[z] \in M: z_{k}=0\right\}$ is oriented by the restriction of ω to this submanifold. Since I_{ψ} is independent of ϵ, we obtain

$$
\begin{equation*}
I_{\psi}=-n \sum_{k=1}^{m}\left(\int_{\left\{[z]: z_{k}=0\right\}}\left(\pi \rho_{1}^{2}-\kappa_{1}\right) \omega^{n-1}\right) . \tag{4.1}
\end{equation*}
$$

For $j=1, \ldots, m$ we write

$$
\begin{equation*}
\alpha_{j}:=\sum_{k=1}^{m}\left(\int_{\{[z]: z k=0\}}\left(\pi \rho_{j}^{2}-\kappa_{j}\right) \omega^{n-1}\right), \tag{4.2}
\end{equation*}
$$

where κ_{j} is defined by the condition

$$
\int_{M} \pi \rho_{j}^{2} \omega^{n}=\kappa_{j} \int_{M} \omega^{n}
$$

Proof of Theorem 3. Let us assume that $\alpha_{1}, \ldots, \alpha_{p}$ are linearly independent over \mathbb{Z}. For $j=1, \ldots, p$ we put

$$
{ }^{j} \psi_{t}:[z] \in M \mapsto\left[z_{1}, \ldots, z_{j} e^{2 \pi i t}, \ldots, z_{m}\right] \in M .
$$

Given $q=\left(q_{1}, \ldots, q_{p}\right) \in \mathbb{Z}^{p}$ we denote by ψ^{q} the path product

$$
\left({ }^{1} \psi\right)^{q_{1}} \star \cdots \star\left({ }^{p} \psi\right)^{q_{p}} .
$$

Formula (4.1) together with the fact that I is a group homomorphism give

$$
I_{\psi^{q}}=-n \sum_{i=1}^{p} q_{i} \alpha_{i}
$$

Analogously if $q^{\prime}=\left(q_{1}^{\prime}, \ldots, q_{p}^{\prime}\right) \in \mathbb{Z}^{p}$, then $I_{\psi q^{\prime}}=-n \sum_{i=1}^{p} q_{i}^{\prime} \alpha_{i}$. By the linear independence of $\alpha_{1}, \ldots, \alpha_{p}$ from $I_{\psi^{q^{\prime}}}=I_{\psi^{q}}$ it follows $q=q^{\prime}$. So ψ^{q} is homotopic to $\psi^{q^{\prime}}$ iff $q=q^{\prime}$.

Example. We will check the above result calculating the family $\left\{\alpha_{j}\right\}$ defined in (4.2) in two particular cases: when the manifold is $\mathbb{C} P^{1}$ and when it is $\mathbb{C} P^{2}$.

For

$$
M=\mathbb{C} P^{1}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=\tau / \pi\right\} / S^{1},
$$

we have

$$
\int_{M} \pi \rho_{1}^{2} \omega=\tau^{2} / 2, \quad \int_{M} \omega=\tau
$$

Thus $\kappa_{1}=\tau / 2$ and $\alpha_{1}=-\kappa_{1}+\tau-\kappa_{1}=0$. Similarly $\alpha_{2}=0$. In this case the number p in Theorem 3 is 0 . This is compatible with the fact that $\pi_{1}\left(\operatorname{Ham}\left(\mathbb{C} P^{1}\right)\right)=\mathbb{Z} / 2 \mathbb{Z}$.

For

$$
M=\mathbb{C} P^{2}=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}=\tau / \pi\right\} / S^{1},
$$

we have the following values for the integrals involved in the definition of α_{1}

$$
\int_{M} \omega^{2}=\tau^{2}, \quad \int_{M} \pi \rho_{1}^{2} \omega^{2}=\tau^{3} / 3
$$

So $\kappa_{1}=\tau / 3$. Moreover for $k \in\{1,2,3\}$

$$
\int_{\left\{[z]: z_{k}=0\right\}} \omega=\tau .
$$

On the other hand, for $k=2,3$

$$
\int_{\{[z]: ; z=0\}} \pi \rho_{1}^{2} \omega=\tau^{2} / 2
$$

So $\alpha_{1}=-\kappa_{1} \tau+\left(\tau^{2} / 2-\kappa_{1} \tau\right)+\left(\tau^{2} / 2-\kappa_{1} \tau\right)=0$. Analogously $\alpha_{2}=\alpha_{3}=0$, so p in Theorem 3 is also 0 . This result is consistent with the finiteness of $\pi_{1}\left(\operatorname{Ham}\left(\mathbb{C} P^{2}\right)\right)$, for $\operatorname{Ham}\left(\mathbb{C} P^{2}\right)$ has the homotopy type of $P U(3)$ [9].

Remark. On the manifold M one point blow up of $\mathbb{C} P^{3}$, defined by (3.1) and (3.2), one can consider the loop $\tilde{\psi}$ defined by

$$
\begin{equation*}
\tilde{\psi}_{t}[z]=\left[z_{1}, z_{2}, z_{3} \mathrm{e}^{2 \pi \mathrm{i} t}, z_{4}, z_{5}\right] . \tag{4.3}
\end{equation*}
$$

A similar calculation to the one carried out in the proof of (3.19) shows that $I_{\tilde{\psi}}=-3 I_{\psi}$.
In the definition of M the variables z_{1}, z_{2}, z_{5} play the same role. However we can consider the following S^{1}-action on M

$$
\begin{equation*}
\hat{\psi}_{t}[z]=\left[z_{1}, z_{2}, z_{3}, z_{4} \mathrm{e}^{2 \pi i t}, z_{5}\right], \tag{4.4}
\end{equation*}
$$

and it turns out that $I_{\hat{\psi}}=3 I_{\psi}$. Thus Theorem 3 guaranties that only \mathbb{Z} is contained in $\pi_{1}(\operatorname{Ham}(M))$.
Let (M, ω) be the toric manifold determined by the Delzant polytope $\Delta \subset \mathfrak{t}^{*}$, where T is an n-dimensional torus. Next we give a formula for the value of I on the Hamiltonian loops generated by the effective action of T on M, in which are involved geometrical magnitudes relative to Δ and the generator of the loop.

By $\mu: M \rightarrow \mathfrak{t}^{*}$ is denoted the moment map for the T-action. Let \mathbf{b} be an element of the integer lattice of \mathfrak{t}, and let $\psi_{\mathbf{b}}$ the S^{1}-action determined by \mathbf{b}. The corresponding normalized Hamiltonian function is $f=\langle\mu, \mathbf{b}\rangle-\kappa$, with

$$
\int_{M}\langle\mu, \mathbf{b}\rangle \omega^{n}=\kappa \int_{M} \omega^{n}
$$

Since

$$
\int_{M} \mu \omega^{n}=\operatorname{Cm}(\Delta) \int_{M} \omega^{n}
$$

where $\mathrm{Cm}(\Delta)$ is the center of mass of Δ, it follows $\kappa=\langle\mathrm{Cm}(\Delta), \mathbf{b}\rangle$.
According to (4.1)

$$
I_{\psi_{\mathbf{b}}}=-n \sum_{k=1}^{m} \int_{D_{k}}(\langle\mu, \mathbf{b}\rangle-\langle\mathrm{Cm}(\Delta), \mathbf{b}\rangle) \omega^{n-1}
$$

where $D_{k}:=\mu^{-1}\left(F_{k}\right)$, and F_{1}, \ldots, F_{m} are the facets of Δ.
We define $\mathrm{C} \mathrm{m}\left(D_{k}\right)$ by the relation

$$
\operatorname{Cm}\left(D_{k}\right) \int_{D_{k}} \omega^{n-1}=\int_{D_{k}} \mu \omega^{n-1}
$$

and

$$
\operatorname{Vol}\left(D_{k}\right):=\frac{1}{(n-1)!} \frac{1}{(2 \pi)^{n-1}} \int_{D_{k}} \omega^{n-1}
$$

Then

$$
\begin{equation*}
I_{\psi_{\mathbf{b}}}=n!(2 \pi)^{n-1} \sum_{k=1}^{m}\left\langle\mathrm{Cm}(\Delta)-\mathrm{Cm}\left(D_{k}\right), \mathbf{b}\right\rangle \operatorname{Vol}\left(D_{k}\right) \tag{4.5}
\end{equation*}
$$

Thus we have the following proposition.

Proposition 9. Let (M, ω) be the toric manifold associated to the polytope Δ. If there is \mathbf{b} in the integer lattice of \mathfrak{t} such that

$$
\sum_{k=1}^{m}\left\langle\mathrm{Cm}(\Delta)-\operatorname{Cm}\left(D_{k}\right), \mathbf{b}\right\rangle \operatorname{Vol}\left(D_{k}\right) \neq 0
$$

then \mathbf{b} generates an element of infinite order in the group $\pi_{1}(\operatorname{Ham}(M, \omega))$.

5. Hamiltonian G-actions

Let G be a compact Lie group and $\phi: G \rightarrow \operatorname{Ham}(M, \omega)$ a Hamiltonian G-action on M. The group homomorphism ϕ induces a map

$$
\Phi: B G \rightarrow B \operatorname{Ham}(M, \omega)
$$

between the corresponding classifying spaces.
On the other hand, one has the universal bundle with fibre M

where $E \operatorname{Ham}(M) \rightarrow B \operatorname{Ham}(M)$ is the universal principal bundle of the group $H:=\operatorname{Ham}(M, \omega)$.
The pullback $\Phi^{-1}\left(M_{H}\right)$ of M_{H} by Φ is a bundle on $B G$ which can be identified with $p: M_{\phi}:=E G \times_{G} M \rightarrow$ $B G$. Thus we have the following commutative diagram

There exists a unique class $\mathbf{c} \in H^{2}\left(M_{H}, \mathbb{R}\right)$ [14] called the coupling, such that \mathbf{c} extends the fiberwise class $[\omega]$ and $\pi_{H_{*}} \mathbf{c}^{n+1}=0$ (where $\pi_{H_{*}}$ is the fiber integration). We put c_{ϕ} for the pullback of \mathbf{c} by Φ^{\prime}; that is, $c_{\phi}=\Phi^{*}(\mathbf{c}) \in H^{2}\left(M_{\phi}, \mathbb{R}\right)$. Since

$$
p_{*}\left(c_{\phi}^{n+1}\right)=\Phi^{*}\left(\pi_{H_{*}} \mathbf{c}^{n+1}\right)=0,
$$

c_{ϕ} is the coupling class of the Hamiltonian fibration $M_{\phi} \rightarrow B G$ [21].
We can also consider the vector bundle

$$
(T M)_{\phi}:=E G \times_{G} T M \rightarrow M_{\phi} .
$$

The first Chern class $c_{1}\left((T M)_{\phi}\right)$ is the G-equivariant first Chern class of $T M$, and it will be denoted by c_{1}^{ϕ}.
By $\operatorname{Hom}(G, \operatorname{Ham}(M))$ is denoted the set of all Lie group homomorphisms ϕ from G to $\operatorname{Ham}(M, \omega)$. In $\operatorname{Hom}(G, \operatorname{Ham}(M))$ one defines the following equivalence relation:
$\phi \simeq \tilde{\phi}$ iff there is a continuous family $\left\{\phi^{s}: G \rightarrow \operatorname{Ham}(M)\right\}_{s \in[0,1]}$ of Lie group homomorphisms, such that $\phi^{0}=\phi$ and $\phi^{1}=\tilde{\phi}$; that is, iff ϕ and $\tilde{\phi}$ are homotopic by a family of group homomorphisms. We denote by $[G, \operatorname{Ham}(M)]_{g h}$ the corresponding quotient set. This space is just a set of connected components of the space of homomorphisms from G to $\operatorname{Ham}(\underset{\sim}{M}, \omega)$.

If $\phi \simeq \tilde{\phi}$, then the bundles $\tilde{\Phi}^{-1}\left(M_{H}\right)$ and $\Phi^{-1}\left(M_{H}\right)$ are isomorphic. Moreover the isomorphism $M_{\phi} \rightarrow M_{\tilde{\phi}}$ applies $c_{\tilde{\phi}}$ in c_{ϕ} and $c_{1}^{\tilde{\phi}}$ in c_{1}^{ϕ}.

For $j=0,1, \ldots, n$ we put

$$
\beta_{j}(\phi):=\left(c_{1}^{\phi}\right)^{j}\left(c_{\phi}\right)^{n-j} \in H^{2 n}\left(M_{\phi}, \mathbb{R}\right)
$$

We write $R_{j}(\phi):=p_{*}\left(\beta_{j}(\phi)\right) \in H^{0}(B G)$. By the localization formula in G-equivariant cohomology $[5,13]$

$$
\begin{equation*}
R_{i}(\phi)=\sum_{Z} p_{*}^{Z}\left(\frac{\left.\beta\right|_{Z}}{e_{Z}}\right) \tag{5.1}
\end{equation*}
$$

where Z varies in the set of connected components of the fixed point set, $p_{*}^{Z}: H_{G}(Z) \rightarrow H(B G)$ is the fiber integration on Z, and e_{Z} is the equivariant Euler class of the normal bundle to Z in M.

From the preceding arguments it follows the following theorem.
Theorem 10. Given ϕ and $\tilde{\phi}$ two Hamiltonian G-actions on M, if there are $j \in\{0,1, \ldots, n\}$ and $X \in \mathfrak{g}$ such that $R_{j}(\phi)(X) \neq R_{j}(\tilde{\phi})(X)$, then $[\phi] \neq[\tilde{\phi}] \in[G, \operatorname{Ham}(M)]_{g h}$.

If $\hat{\omega} \in H^{2}\left(M_{\phi}, \mathbb{R}\right)$ is an element which restricts to the class of the symplectic form on the fiber in the fibration $p: M_{\phi} \rightarrow B G$, then

$$
c_{\phi}=\hat{\omega}-\frac{1}{k} p^{*}\left(p_{*}\left(\hat{\omega}^{n+1}\right)\right),
$$

where the constant $k=(n+1) \int_{M} \omega^{n}$ (see [14]). In particular, if $G=U(1)$ we denote by f the normalized Hamiltonian function; that is, $\iota_{Y} \omega=-\mathrm{d} f$ and $\int_{M} f \omega^{n}=0$, where Y the vector field on M generated by ϕ. Then c_{ϕ} is the class in $H^{2}\left(M_{\phi}\right)$ defined by the $U(1)$-equivariant 2-form $\omega+f u$, where u is a coordinate on the Lie algebra $\mathfrak{u}(1)$ dual of a fixed base X of $\mathfrak{u}(1)$ (see $[16,13]$).

When $G=U(1)$ a representative of $c_{1}^{\phi}(\operatorname{det}(T M))$ can be constructed following [3] or [5]. Let s be a local section of $\operatorname{det}(T M)$ over the open V. The infinitesimal action of X on the section s is the section $X s$ defined in (1.11). $X s$ is a section which can be written as the product $L \cdot s$, of a function L on V and s. If α is the form relative to s of an equivariant connection on $\operatorname{det}(T M)$, and X_{M} is the Hamiltonian vector field on M defined in (1.9), then

$$
\begin{equation*}
\frac{-1}{2 \pi \mathrm{i}}\left(\mathrm{~d} \alpha+\left(L-\iota_{X_{M}} \alpha\right) u\right), \tag{5.2}
\end{equation*}
$$

is a representative of $c_{1}^{\phi}(\operatorname{det}(T M))$ on V. So a representative of $\beta_{1}=c_{1}^{\phi}(T M) c_{\phi}^{n-1}$ on V is

$$
\begin{equation*}
\frac{-1}{2 \pi \mathrm{i}}\left(\mathrm{~d} \alpha+\left(L-\iota_{X_{M}} \alpha\right) u\right) \wedge(\omega+f u)^{n-1} . \tag{5.3}
\end{equation*}
$$

On the other hand, if $G=U(1)$ and $\mu: M \rightarrow \mathfrak{u}(1)^{*}$ is the normalized moment map, $\mathcal{R}_{\phi}(Z)$ defined in (1.6) is equal to

$$
\begin{equation*}
\mathcal{R}_{\phi}(Z)=\left(\frac{1}{2 \pi \mathrm{i}}\right)^{n} \int_{M} \mathrm{e}^{\mathrm{i} c_{\phi}(Z)} \tag{5.4}
\end{equation*}
$$

for any $Z \in \mathfrak{g}$. So Theorem 10 is applicable to \mathcal{R}.

5.1. Flag manifolds

Let $\eta \in \mathfrak{g}^{*}$ be a regular element; that is, the stabilizer G_{η} of η for the coadjoint action of G is a maximal torus T. By \mathcal{O} is denoted the coadjoint orbit of η, endowed with the Kirillov symplectic structure ω. The G-action on \mathcal{O} is Hamiltonian and the inclusion map $\mu: \mathcal{O} \rightarrow \mathfrak{g}^{*}$ is a moment map for this action. The Fourier transform of the orbit \mathcal{O} is the function F defined on \mathfrak{g} by (see [5])

$$
\begin{equation*}
F(X)=\left(\frac{1}{2 \pi \mathrm{i}}\right)^{n} \int_{\mathcal{O}} \mathrm{e}^{\mathrm{i}(\mu(X)+\omega)}, \tag{5.5}
\end{equation*}
$$

where $X \in \mathfrak{g}$ and $n=(\operatorname{dim} \mathcal{O}) / 2$.
Let Y be a vector of \mathfrak{g}, by ϕ_{t}^{Y} we denote the isotopy defined in (1.10). If $\left\{\phi_{t}^{Y}\right\}_{t \in[0,1]}$ is a closed curve in $\operatorname{Ham}(\mathcal{O})$, we have a Hamiltonian circle action $\phi^{Y}: U(1) \rightarrow \operatorname{Ham}(\mathcal{O})$ and $\mu(Y)$ is a Hamiltonian function for this S^{1}-action. If

$$
\begin{equation*}
\kappa:=\left(\int_{\mathcal{O}} \mu(Y) \omega^{n}\right)\left(\int_{\mathcal{O}} \omega^{n}\right)^{-1} \tag{5.6}
\end{equation*}
$$

then $f=\mu(Y)-\kappa$ is the normalized Hamiltonian which generates the $U(1)$-action.

On the other hand, one deduces from (5.5)

$$
\begin{equation*}
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} F(t Y)=\left(\frac{1}{2 \pi}\right)^{n} \frac{\mathrm{i}}{n!} \int_{\mathcal{O}} \mu(Y) \omega^{n} . \tag{5.7}
\end{equation*}
$$

It follows from (5.6) and (5.7) the following formula for the constant κ

$$
\begin{equation*}
\kappa=\left.\frac{-\mathrm{i}}{\operatorname{Vol}(\mathcal{O})} \frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} F(t Y), \tag{5.8}
\end{equation*}
$$

where the symplectic volume is

$$
\operatorname{Vol}(\mathcal{O})=\frac{1}{(2 \pi)^{n}} \frac{1}{n!} \int_{\mathcal{O}} \omega^{n} .
$$

According to (5.4) and (5.8) we have the following proposition.
Proposition 11. Given $Y \in \mathfrak{g}$, if ϕ^{Y} is a loop in $\operatorname{Ham}(\mathcal{O})$, then

$$
\begin{equation*}
\mathcal{R}_{\phi^{Y}}(Y)=\exp \left(-\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \log F(t Y)\right) F(Y) \tag{5.9}
\end{equation*}
$$

Let W be the Weyl group determined by the torus T and X an regular element of \mathfrak{t}. The Harish-Chandra theorem gives a formula for $F(X)$ in terms of roots of \mathfrak{t} (see [5])

$$
\begin{equation*}
F(X)=\prod_{\eta(i \dot{\alpha})>0}(\alpha(X))^{-1} \sum_{w \in W} \epsilon(w) \mathrm{e}^{\mathrm{i}(w \cdot \eta)(X)}, \tag{5.10}
\end{equation*}
$$

where $\epsilon(w)$ is the signature of the permutation $w \in W$. From (5.9) and (5.10) one deduces that $\mathcal{R}_{\phi^{Y}}(Y)$ can be calculated using the root structure defined by the pair (G, T).

Example. Let $G=S U(2)$ and $\eta \in \mathfrak{s} u(2)^{*}$ defined by

The stabilizer of η is $T=U(1)$, the coadjoint orbit \mathcal{O} is $\mathbb{C} P^{1}$ and the corresponding symplectic form is $\omega_{\text {area. }}$. The Weyl group $W=N(T) / T$, with $N(T)$ the normalizer of T in $S U(2)$, consists of the class of id and the class of

$$
\left(\begin{array}{cc}
0 & 1 \tag{5.11}\\
-1 & 0
\end{array}\right) .
$$

If $\alpha_{1}=\epsilon_{1}-\epsilon_{2}$ is the usual base of roots, then $\eta\left(\mathrm{i} \check{\alpha}_{1}\right)=1$. In this case the product in (5.10) has only one factor and the sum of two addends.

Let $Y=\operatorname{diag}(\pi \mathrm{i},-\pi \mathrm{i})$, then the vector C_{t} in (2.3) for $n=k=1$ is equal to $t Y$. Thus ϕ^{Y} is the loop in $\operatorname{Ham}(\mathcal{O})$ denoted by ${ }_{1} \psi$ in Section 2. This loop defines the only nontrivial class of $\pi_{1}(\operatorname{Ham}(\mathcal{O})$) (see the paragraph before Theorem 5).

If w is the element of W defined by (5.11), then $w Y=\operatorname{diag}(-\pi \mathrm{i}, \pi \mathrm{i})$, and $\eta(w Y)=-\pi$. Furthermore $\alpha_{1}(Y)=2 \pi \mathrm{i}$. It follows from (5.10)

$$
F(Y)=\frac{1}{2 \pi \mathrm{i}}\left(\mathrm{e}^{\pi \mathrm{i}}-\mathrm{e}^{-\pi \mathrm{i}}\right)=0
$$

By (5.9) $\mathcal{R}_{\phi^{Y}}(Y)=0$.
In general, if $b \neq 0$ then for $Z=b Y$,

$$
F(Z)=\frac{\sin b \pi}{b \pi}
$$

The loop determined by $2 Y$ defines the trivial class in $\pi_{1}(\operatorname{Ham}(\mathcal{O}))$, and $\mathcal{R}_{\phi^{2 Y}}(2 Y)=0$.

On the other hand,

$$
\begin{equation*}
\mathcal{R}_{\phi^{0}}(X)=\operatorname{Vol}(\mathcal{O}), \tag{5.12}
\end{equation*}
$$

for any $0 \neq X \in \mathfrak{g}$. It follows from Theorem 10 and (5.12) the following proposition.
Proposition 12. The circle action on $\left(\mathbb{C} P^{1}, \omega_{\text {area }}\right)$ defined by $\operatorname{diag}(2 \pi \mathrm{i},-2 \pi \mathrm{i}) \in \mathfrak{s u}(2)$ and the trivial one determine distinct elements in $\left[U(1), \operatorname{Ham}\left(\mathbb{C} P^{1}\right)\right]_{g h}$.

Proposition 12 gives an example of a pair of Hamiltonian circle actions on $\left(\mathbb{C} P^{1}, \omega_{\text {area }}\right)$ which define the same element in $\pi_{1}(\mathrm{Ham})$ but they are not homotopic by a family of circle actions.

5.2. Hirzebruch surfaces

Next we determine the value $R_{\phi}:=R_{1}(\phi)$ for three Hamiltonian actions on a Hirzebruch surface. We will define these actions using the fact that such a surface is a submanifold of $\mathbb{C} P^{1} \times \mathbb{C} P^{2}$.

Given 3 numbers k, τ, σ, with $k \in \mathbb{Z}_{>0}, \tau, \sigma \in \mathbb{R}_{>0}$ and $k \sigma<\tau$, the triple (k, τ, σ) determine a Hirzebruch surface M (see [4]). This surface is the quotient

$$
\left\{z \in \mathbb{C}^{4}: k\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{4}\right|^{2}=\tau / \pi,\left|z_{1}\right|^{2}+\left|z_{3}\right|^{2}=\sigma / \pi\right\} / \mathbb{T}
$$

where the equivalence defined by $\mathbb{T}=\left(S^{1}\right)^{2}$ is given by

$$
(a, b) \cdot\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(a^{k} b z_{1}, a z_{2}, b z_{3}, a z_{4}\right),
$$

for $(a, b) \in\left(S^{1}\right)^{2}$.
The map

$$
\left[z_{1}, z_{2}, z_{3}, z_{4}\right] \mapsto\left(\left[z_{2}: z_{4}\right],\left[z_{2}^{k} z_{3}: z_{4}^{k} z_{3}: z_{1}\right]\right)
$$

allows us to represent M as a submanifold of $\mathbb{C} P^{1} \times \mathbb{C} P^{2}$. On the other hand, the usual symplectic structures on $\mathbb{C} P^{1}$ and $\mathbb{C} P^{2}$ induce a symplectic form ω on M, and the following $\left(S^{1}\right)^{2}$-action on $\mathbb{C} P^{1} \times \mathbb{C} P^{2}$

$$
(a, b)\left(\left[u_{0}: u_{1}\right],\left[x_{0}: x_{1}: x_{2}\right]\right)=\left(\left[a u_{0}: u_{1}\right],\left[a^{k} x_{0}: x_{1}: b x_{2}\right]\right)
$$

gives rise to a toric structure on M. The Delzant polytope associated to (M, ω) is the trapezoid in $\left(\mathbb{R}^{2}\right)^{*}$ whose not oblique edges have the lengths τ, σ, and $\lambda:=\tau-k \sigma$ (see [10]). Moreover λ is the value that the symplectic form ω takes on $\left\{[z] \in M: z_{3}=0\right\}$, the exceptional divisor of M, when $k=1$. And ω takes the value σ on the class of the fibre in the fibration $M \rightarrow \mathbb{C} P^{1}$.

Let ϕ_{t} be the diffeomorphism of M defined by

$$
\begin{equation*}
\phi_{t}\left[z_{1}, z_{2}, z_{3}, z_{4}\right]=\left[z_{1} \mathrm{e}^{2 \pi \mathrm{i} t}, z_{2}, z_{3}, z_{4}\right] . \tag{5.13}
\end{equation*}
$$

$\phi=\left\{\phi_{t}: t \in[0,1]\right\}$ is a loop of Hamiltonian symplectomorphisms of (M, ω). The fixed point set is $Z=\{[z] \in M$: $\left.z_{1}=0\right\}$; that is, $Z \simeq \mathbb{C} P^{1}$ is the section at infinity of $M \rightarrow \mathbb{C} P^{1}$ (see [4]).

On M we can consider the covering

$$
\begin{array}{ll}
U_{1}=\left\{[z] \in M: z_{3} \neq 0 \neq z_{4}\right\}, & U_{2}=\left\{[z] \in M: z_{1} \neq 0 \neq z_{4}\right\} \\
U_{3}=\left\{[z] \in M: z_{1} \neq 0 \neq z_{2}\right\}, & U_{4}=\left\{[z] \in M: z_{2} \neq 0 \neq z_{3}\right\} .
\end{array}
$$

So $Z \cap U_{j}=\emptyset$, for $j=2$, 3. On U_{4} one defines the complex coordinates

$$
w_{0}:=\frac{z_{4}}{z_{2}}, \quad w_{0}^{\prime}:=\frac{z_{1}}{z_{3} z_{2}^{k}} .
$$

In these coordinates

$$
\begin{equation*}
\phi_{t}\left(w_{0}, w_{0}^{\prime}\right)=\left(w_{0}, w_{0}^{\prime} \mathrm{e}^{2 \pi \mathrm{i} t}\right) . \tag{5.14}
\end{equation*}
$$

On U_{1} we introduce the complex coordinates

$$
\begin{equation*}
w_{1}:=\frac{z_{2}}{z_{4}}, \quad w_{1}^{\prime}:=\frac{z_{1}}{z_{3} z_{4}^{k}} . \tag{5.15}
\end{equation*}
$$

Thus on $U_{1} \cap U_{4}$ one has the following relation

$$
\begin{equation*}
\frac{\partial}{\partial w_{1}} \wedge \frac{\partial}{\partial w_{1}^{\prime}}=-w_{0}^{k+2} \frac{\partial}{\partial w_{0}} \wedge \frac{\partial}{\partial w_{0}^{\prime}} \tag{5.16}
\end{equation*}
$$

between the sections of $\operatorname{det}(T M)$.
On $Z \cap U_{4}$ we have the complex coordinate w_{0} and on $Z \cap U_{1}$ the coordinate w_{1}, with $w_{1}=w_{0}^{-1}$. By (5.16) the bundle $\left.\operatorname{det}(T M)\right|_{Z}$ is the one whose first Chern class is $(k+2)$; that is, $\left.\operatorname{det}(T M)\right|_{Z}=\mathcal{O}(k+2)$.

Let us consider the local section

$$
s:=\frac{\partial}{\partial w_{0}} \wedge \frac{\partial}{\partial w_{0}^{\prime}}
$$

of $\operatorname{det}(T M)$. We need to determine the corresponding function L which appears in (5.2). From (5.14) it follows

$$
\begin{equation*}
\left(\phi_{t}\right)_{*}\left(\frac{\partial}{\partial w_{0}}\right)=\frac{\partial}{\partial w_{0}}, \quad\left(\phi_{t}\right)_{*}\left(\frac{\partial}{\partial w_{0}^{\prime}}\right)=\mathrm{e}^{2 \pi \mathrm{it}} \frac{\partial}{\partial w_{0}^{\prime}}, \tag{5.17}
\end{equation*}
$$

then

$$
\left(\phi_{t}\right)_{*}(s)=\mathrm{e}^{2 \pi \mathrm{i} t} s
$$

Thus the above function L is the constant $2 \pi \mathrm{i}$.
On the other hand, the Hamiltonian vector field X_{M} which corresponds to $X=2 \pi \mathfrak{i} \in \mathfrak{u}(1)$ is

$$
X_{M}=-2 \pi \mathrm{i} w_{0}^{\prime} \frac{\partial}{\partial w_{0}^{\prime}}
$$

On $Z^{\prime}:=Z \backslash\left(\left\{w_{0}=0\right\} \cup\left\{w_{1}=0\right\}\right)$ the class $\beta=c_{1}^{\phi}(T M) c_{\phi}$ is represented by the equivariant form

$$
\begin{equation*}
\left(\left.\delta\right|_{Z^{\prime}}-\frac{1}{2 \pi \mathrm{i}}(2 \pi \mathrm{i}-0) u\right)\left(\left.\omega\right|_{Z^{\prime}}+\left.f\right|_{Z^{\prime}} u\right), \tag{5.18}
\end{equation*}
$$

where δ is a 2 -form representing the ordinary first Chern class of $\operatorname{det}(T M)$.
The normalized Hamiltonian function is $f=\pi\left|z_{1}\right|^{2}-\kappa$, with $\kappa \in \mathbb{R}$. So $f_{\mid Z}=-\kappa$. The constant κ is fixed by the normalization condition. An easy calculation gives

$$
\begin{equation*}
\kappa=\frac{\sigma}{3}\left(\frac{3 \lambda+k \sigma}{2 \lambda+k \sigma}\right) . \tag{5.19}
\end{equation*}
$$

Next we calculate the equivariant Euler class e_{Z} of the normal bundle N_{Z} to Z in M. Let q be a point of Z^{\prime}, then

$$
T_{q} M=\mathbb{C} \frac{\partial}{\partial w_{0}^{\prime}} \oplus T_{q} Z
$$

Since $\frac{\partial}{\partial w_{0}^{\prime}}$ and $\frac{\partial}{\partial w_{1}^{\prime}}$ are sections of N_{Z} on $Z \cap U_{4}$ and $Z \cap U_{1}$ respectively, such that

$$
\frac{\partial}{\partial w_{1}^{\prime}}=w_{0}^{k} \frac{\partial}{\partial w_{0}^{\prime}},
$$

we have $N_{Z}=\mathcal{O}(k)$.

We put $w_{0}^{\prime}=x+\mathrm{i} y$ and on N_{Z} we consider the orientation defined by $\frac{\partial}{\partial w_{0}^{\prime}}$. The vector field X_{M} at $q=(x, y)$ is $X_{M}=2 \pi\left(y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}\right)$. So

$$
\left[X_{M}, \frac{\partial}{\partial x}\right]=2 \pi \frac{\partial}{\partial y}, \quad\left[X_{M}, \frac{\partial}{\partial y}\right]=-2 \pi \frac{\partial}{\partial x} .
$$

Then $\operatorname{det}^{1 / 2}\left(\left[X_{M},\right]\right)=2 \pi$. If $c_{1}(\mathcal{O}(k))$ is represented in Z^{\prime} by the 2 -form χ, then the equivariant Euler class e_{Z} is represented by (see [5])

$$
\chi+(-2 \pi) \operatorname{det}^{-1 / 2}\left(\left[X_{M},\right]\right) u=\chi-u .
$$

It follows from (5.1) and (5.18) that

$$
\begin{equation*}
R_{\phi}=\int_{Z^{\prime}} \frac{(\delta-u)(\omega-\kappa u)}{\chi-u}=\frac{-1}{u} \int_{Z^{\prime}}(\delta-u)(\omega-\kappa u)(1+\chi / u)=2 \kappa+\omega(Z) . \tag{5.20}
\end{equation*}
$$

A straightforward calculation gives $\int_{Z} \omega=\lambda+k \sigma$. It follows from this value together with (5.19) and (5.20)

$$
\begin{equation*}
R_{\phi}=\frac{6 \lambda^{2}+(9 k+6) \lambda \sigma+\left(2 k+3 k^{2}\right) \sigma^{2}}{6 \lambda+3 k \sigma} . \tag{5.21}
\end{equation*}
$$

Given $0 \neq r \in \mathbb{Z}$ we can consider the loop ξ defined by

$$
\xi_{t}[z]=\left[z_{1} \mathrm{e}^{2 \pi r t \mathrm{i}}, z_{2}, z_{3}, z_{4}\right] .
$$

The fixed point set for this $U(1)$-action set is Z as well. The corresponding Hamiltonian action is $r f$. In this case the respective function L is $2 \pi r \mathrm{i}$, and now the equivariant Euler class of N_{Z} is $e_{Z}=c_{1}(\mathcal{O}(k))-r u$. Hence

$$
\begin{equation*}
R_{\xi}=\frac{-1}{r u} \int_{Z^{\prime}}(\delta-r u)(\omega-r \kappa u)(1+\chi /(r u))=R_{\phi} \tag{5.22}
\end{equation*}
$$

Next we shall determine $R_{\tilde{\phi}}$, where the $U(1)$-action $\tilde{\phi}_{t}$ is defined by

$$
\begin{equation*}
\tilde{\phi}_{t}[z]=\left[z_{1}, z_{2} \mathrm{e}^{2 \pi t \mathrm{i}}, z_{3}, z_{4}\right] . \tag{5.23}
\end{equation*}
$$

Now the fixed point set is $\tilde{Z}=\left\{[z] \in M: z_{2}=0\right\}$, it is the fibre over $[0: 1]$ of the fibration $M \rightarrow \mathbb{C} P^{1}$ and can be identified with

$$
\mathbb{C} P^{1} \simeq\left\{\left([0: 1],\left[0: z_{3}: z_{1}\right]\right)\right\} \subset \mathbb{C} P^{1} \times \mathbb{C} P^{2}
$$

The normalized Hamiltonian function is $\tilde{f}=\pi\left|z_{2}\right|^{2}-\tilde{\kappa}$, with

$$
\begin{equation*}
\tilde{\kappa}=\frac{3 \lambda^{2}+3 k \lambda \sigma+k^{2} \sigma^{2}}{6 \lambda+3 k \sigma} . \tag{5.24}
\end{equation*}
$$

A calculation similar to the preceding one shows that

$$
\begin{equation*}
R_{\tilde{\psi}}=2 \tilde{\kappa}+\omega(\tilde{Z}) . \tag{5.25}
\end{equation*}
$$

Since $\int_{\tilde{Z}} \omega=\sigma$, it follows from (5.25) together with (5.24) that

$$
\begin{equation*}
R_{\tilde{\psi}}=\frac{6 \lambda^{2}+(6 k+6) \lambda \sigma+\left(3 k+2 k^{2}\right) \sigma^{2}}{6 \lambda+3 k \sigma} . \tag{5.26}
\end{equation*}
$$

One can consider the Hamiltonian loop $\hat{\phi}_{t}$ defined by

$$
\begin{equation*}
\hat{\phi}_{t}[z]=\left[z_{1}, z_{2}, z_{3} \mathrm{e}^{2 \pi \mathrm{i} t}, z_{4}\right] . \tag{5.27}
\end{equation*}
$$

The corresponding fixed point set is $\hat{Z}=\left\{[z]: z_{3}=0\right\}$. The normalized Hamiltonian function \hat{f} is $\hat{f}=\pi\left|z_{3}\right|^{2}-\hat{\kappa}$, with

$$
\begin{equation*}
\hat{\kappa}=\frac{3 \lambda \sigma+2 k \sigma^{2}}{6 \lambda+3 k \sigma} . \tag{5.28}
\end{equation*}
$$

It is easy to prove that

$$
\begin{equation*}
R_{\hat{\phi}}=2 \hat{\kappa}+\omega(\hat{Z}) \tag{5.29}
\end{equation*}
$$

and $\omega(\hat{Z})=\lambda$.
We can state the following theorem.
Theorem 13. If $\phi_{t}, \tilde{\phi}_{t}$ and $\hat{\phi}_{t}$ are the loops in $\operatorname{Ham}(M)$ defined by (5.13), (5.23) and (5.27) respectively, then

$$
R_{\phi}=2 \kappa+\omega(Z), \quad R_{\tilde{\phi}}=2 \tilde{\kappa}+\omega(\tilde{Z}), \quad R_{\hat{\phi}}=2 \hat{\kappa}+\omega(\hat{Z}),
$$

where Z, \tilde{Z}, and \hat{Z} are the respective fixed point sets and the constants $\kappa, \tilde{\kappa}$, and $\hat{\kappa}$ are given by (5.19), (5.24) and (5.28) respectively.

From (5.21) and (5.26) it follows

$$
\begin{equation*}
R_{\phi}-R_{\tilde{\phi}}=\frac{3 k \lambda \sigma+k(k-1) \sigma^{2}}{6 \lambda+3 k \sigma}>0 \tag{5.30}
\end{equation*}
$$

For $0 \neq r \in \mathbb{Z}$ we denote by ϕ_{t}^{r} the diffeomorphism of M composition

$$
\overbrace{\phi_{t} \circ \cdots \circ \phi_{t}}^{r}
$$

if $r>0$, and the obvious composition when $r<0$. By (5.22) one has $R_{\phi^{r}}=R_{\phi}$. From Theorem 10 together with (5.30) one deduces the following corollary.

Corollary 14. If r, r^{\prime} are nonzero integers, then ϕ_{t}^{r} and $\tilde{\phi}_{t}^{r^{\prime}}$ are loops in $\operatorname{Ham}(M)$ which are not homotopic by a homotopy consisting of Hamiltonian circle actions.

Finally we consider the 1-parameter subgroup ζ in $\operatorname{Ham}(M)$ defined by the toric structure and the inclusion

$$
y \in S^{1} \mapsto\left(y^{l}, y^{\tilde{l}}\right) \in\left(S^{1}\right)^{2}
$$

where $l, \tilde{l} \in \mathbb{Z} \backslash\{0\}$. That is,

$$
\begin{equation*}
\zeta_{t}[z]=\left[z_{1} \mathrm{e}^{2 \pi \mathrm{i} l t}, z_{2} \mathrm{e}^{2 \pi \mathrm{i} \tilde{\mathrm{i}} t}, z_{3}, z_{4}\right] . \tag{5.31}
\end{equation*}
$$

The fixed point set F of ζ is the singleton set $F=\left\{[z] \in M: z_{1}=z_{2}=0\right\}$. This point belongs to U_{1}; and in the coordinates w_{1}, w_{1}^{\prime} (see (5.15)) on U_{1}

$$
\zeta_{t}\left(w_{1}, w_{1}^{\prime}\right)=\left(w_{1} \mathrm{e}^{2 \pi \mathrm{i} l t}, w_{1}^{\prime} \mathrm{e}^{2 \pi \mathrm{i} \tilde{I} t}\right)
$$

Hence

$$
\zeta_{t *}\left(\frac{\partial}{\partial w_{1}} \wedge \frac{\partial}{\partial w_{1}^{\prime}}\right)=\mathrm{e}^{2 \pi \mathrm{i}(l+\tilde{l}) t} \frac{\partial}{\partial w_{1}} \wedge \frac{\partial}{\partial w_{1}^{\prime}},
$$

and the corresponding function L is the constant $2 \pi \mathrm{i}(l+\tilde{l})$.
On the other hand, the corresponding Hamiltonian vector field Y_{M} is

$$
Y_{M}=-2 \pi \mathrm{i}\left(l w_{1} \frac{\partial}{\partial w_{1}}+\tilde{l} w_{1}^{\prime} \frac{\partial}{\partial w_{1}^{\prime}}\right),
$$

which vanishes on F. The normalized Hamiltonian function defined by ζ is

$$
l\left(\pi\left|z_{1}\right|^{2}-\kappa\right)+\tilde{l}\left(\pi\left|z_{2}\right|^{2}-\tilde{\kappa}\right)
$$

On F this Hamiltonian reduces to the constant $-(l \kappa+\tilde{l} \tilde{\kappa})$.
According to our conventions the $U(1)$-action on $\mathbb{C} \frac{\partial}{\partial w_{1}}$ has multiplicity $-l$, and the multiplicity on the space $\mathbb{C} \frac{\partial}{\partial w_{1}^{\prime}}$ is $-\tilde{l}$, then the equivariant Euler class of the normal bundle to F in M is $e_{F}=l \tilde{l} u^{2}$. Thus by (5.1) and (5.3), $R_{\zeta}=(l+\tilde{l})(l \kappa+\tilde{l} \tilde{\kappa})(l \tilde{l})^{-1}$.

One can state the following proposition.
Proposition 15. Let l, \tilde{l} be nonzero integers, and ζ the 1 -subgroup of $\operatorname{Ham}(M)$ defined by (5.31), then

$$
R_{\zeta}=\frac{(l+\tilde{l})(l \kappa+\tilde{l} \tilde{\kappa})}{l \tilde{l}}
$$

where the constants κ and $\tilde{\kappa}$ are given by (5.19) and by (5.24) respectively.
R_{ζ} is a rational function in the variables l, \tilde{l}. Hence $R_{\zeta}=R_{\zeta^{r}}$, for any $r \in \mathbb{Z} \backslash\{0\}$. If $\mathbf{I}=(l, \tilde{l})$ and $\mathbf{I}^{\prime}=\left(l^{\prime}, \tilde{l}^{\prime}\right)$ are two pairs of nonzero integers such that the corresponding 1-parameter subgroups $\zeta(\mathbf{l})$ and $\zeta\left(\mathbf{I}^{\prime}\right)$ satisfy $R_{\zeta(\mathbf{I})} \neq R_{\zeta\left(\mathbf{I}^{\prime}\right)}$, then, by Theorem 10, $\zeta(\mathbf{l})^{r}$ and $\zeta\left(\mathbf{I}^{\prime}\right)^{s}$ are not homotopic by a family of Hamiltonian S^{1}-actions, whenever $r, s \in \mathbb{Z} \backslash\{0\}$.

When M is the Hirzebruch surface determined by the triple ($k=1, \tau>2, \sigma=1$), Abreu and McDuff proved in [2] that $\pi_{1}(\operatorname{Ham}(M))$ is isomorphic to \mathbb{Z}. Thus we have the following corollary.

Corollary 16. Let M be the Hirzebruch surface defined by $(k=1, \tau>2, \sigma=1)$. There are infinitely many pairs $\left(\zeta(\mathbf{l}), \zeta\left(\mathbf{I}^{\prime}\right)\right)$ of 1-parameter closed subgroups of $\operatorname{Ham}(M)$ such that $[\zeta(\mathbf{l})]=\left[\zeta\left(\mathbf{I}^{\prime}\right)\right] \in \pi_{1}(\operatorname{Ham}(M))$, but

$$
[\zeta(\mathbf{l})] \neq\left[\zeta\left(\mathbf{I}^{\prime}\right)\right] \in[U(1), \operatorname{Ham}(M)]_{g h} .
$$

Remark 1. Two Hamiltonian circle actions on M, ϕ and ϕ^{\prime} are conjugate if there exists an element $h \in \operatorname{Ham}(M)$, such that $h \cdot \phi_{t} \cdot h^{-1}=\phi_{t}^{\prime}$ for all t. If ϕ and ϕ^{\prime} are conjugate, let h_{s} be a path in $\operatorname{Ham}(M)$ from Id to h, then $h_{s} \cdot \phi \cdot h_{s}^{-1}$ defines a homotopy between ϕ and ϕ^{\prime}, and $[\phi]=\left[\phi^{\prime}\right] \in[U(1), \operatorname{Ham}(M)]_{g h}$. By Corollary 16, there are infinitely many conjugacy classes of circle actions on the Hirzebruch surface considered in this corollary.

Remark 2. Although the characteristic R_{1} allows us to distinguish infinitely many conjugacy classes of Hamiltonian circle actions in a Hirzebruch surface M, the situation is different for $U(1)^{2}$-actions, as we show next.

Given $\mathbf{I}=(l, \tilde{l})$ a pair of nonzero integers, we define a $U(1)^{2}$-action on M by

$$
\xi_{s t}[z]=\left[z_{1} \mathrm{e}^{2 \pi \mathrm{i} l s}, z_{2} \mathrm{e}^{2 \pi \mathrm{i} \tilde{l} t}, z_{3}, z_{4}\right] .
$$

The fixed point set is again the singleton F, and the equivariant Euler class $e_{F}=l \tilde{l} u v$, where u, v are coordinates on $\mathfrak{u}(1) \oplus \mathfrak{u}(1)$. According to the localization formula (5.1), $R_{1}(\xi)$ is a rational function of the variables $\check{u}:=l u, \check{v}:=\tilde{l} v$. The numerator is a homogeneous degree two polynomial $A_{1} \check{u}^{2}+A_{2} \check{u} \check{v}+A_{3} \check{v}^{2}$, with A_{j} independent of \mathbf{l}; and the denominator is $\check{u} \check{v}$. As $R_{1}(\xi) \in H^{0}\left(B\left(U(1)^{2}\right)\right)$, then $A_{1}=A_{3}=0$, and $R_{1}(\xi)$ is independent of \mathbf{l}. That is, R_{1} is constant on $\{\xi(\mathbf{I})\}_{1}$. But Karshon proved that the number of conjugacy classes of maximal tori in M is the smallest integer greater than or equal to $\frac{\lambda}{\sigma}$ (see [15]). That is, the characteristic number R_{1} is not fine enough to analyze this case.

Acknowledgements

This work has been partially supported by Ministerio de Ciencia y Tecnología, grant MAT2003-09243-C02-00.
I thank Dusa McDuff for her enlightening comments. I thank an anonymous referee for constructive comments and for having pointed out for me the references [18,15]. Remark 1 to Corollary 16 is really a comment of the referee.

References

[1] M. Abreu, Topology of symplectomorphism group of $S^{2} \times S^{2}$, Invent. Math. 131 (1998) 1-23.
[2] M. Abreu, D. McDuff, Topology of symplectomorphism groups of rational ruled surfaces, J. Amer. Math. Soc. 13 (2000) $971-1009$.
[3] M.F. Atiyah, R. Bott, The moment map and equivariant cohomology, Topology 23 (1984) 1-28.
[4] M. Audin, Torus Actions on Symplectic Manifolds, Birkhäuser, Basel, 2004.
[5] N. Berline, E. Getzler, M. Vergne, Heat Kernels and Dirac Operators, Springer-Verlag, Berlin, 1991.
[6] C.J. Earle, J. Eells, A fibre bundle description of Teichmüller theory, J. Differential Geom. 3 (1969) 19-43.
[7] W. Fulton, J. Harris, Representation Theory, Springer-Verlag, New York, 1991.
[8] R. Goodman, N.R. Wallach, Representations and Invariants of Classical Groups, Cambridge U.P., Cambridge, 1998.
[9] M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307-347.
[10] V. Guillemin, Moment Maps and Combinatorial Invariants of Hamiltonian T^{n}-Spaces, Birkhäuser, Boston, 1994.
[11] V. Guillemin, L. Lerman, S. Sternberg, Symplectic Fibrations and Multiplicity Diagrams, Cambridge U.P., Cambridge, 1996.
[12] V. Guillemin, S. Sternberg, Symplectic Techniques in Physics, Cambridge U.P., Cambridge, 1984.
[13] V. Guillemin, S. Sternberg, Supersymmetry and Equivariant de Rham Theory, Springer-Verlag, Berlin, 1999.
[14] T. Januszkiewicz, J. Kedra, Characteristic classes of smooth fibrations. ArXiv: math.SG/0209288.
[15] Y. Karshon, Maximal tori in the symplectomorphism groups of Hirzebruch surfaces, Math. Res. Lett. 10 (2003) $125-132$.
[16] J. Kedra, D. McDuff, Homotopy properties of Hamiltonian group actions, Geom. Topol. 9 (2005) 121-162.
[17] A.A. Kirilov, Elements of the Theory of Representations, Springer-Verlag, Berlin, 1976.
[18] F. Lalonde, D. McDuff, L. Polterovich, On the flux conjectures, in: CRM Proceedings and Lecture Notes 15, Amer. Math. Soc., Providence, RI, 1998, pp. 69-85.
[19] F. Lalonde, D. McDuff, L. Polterovich, Topological rigidity of Hamiltonian loops and quantum homology, Invent. Math. 135 (1999) $369-385$.
[20] D. McDuff, Lectures on groups of symplectomorphisms. ArXiv: math.SG/0201032 (preprint).
[21] D. McDuff, D. Salamon, Introduction to Symplectic Topology, Clarenton Press, Oxford, 1998.
[22] D. McDuff, D. Salamon, J-Holomorphic Curves and Symplectic Topology, Amer. Math. Soc. Colloq. Publ., Providence, 2004.
[23] D. McDuff, S. Tolman, On nearly semifree circle actions. ArXiv: math.SG/0503467 (preprint).
[24] D. McDuff, S. Tolman, Polytopes with mass linear functions (in preparation).
[25] L. Polterovich, The Geometry of the Group of Symplectic Diffeomorphisms, Birkhäuser, Basel, 2001.
[26] D. Salamon, E. Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. XLV (1992) 1303-1360.
[27] A. Viña, Generalized symplectic action and symplectomorphism groups of coadjoint orbits, Ann. Global Anal. Geom. 28 (2005) $309-318$.
[28] A. Viña, A characteristic number of Hamiltonian bundles over S^{2}, J. Geom. Phys. 56 (2006) 2327-2343.
[29] A. Weinstein, Cohomology of symplectomorphism groups and critical values of Hamiltonians, Math. Z. 201 (1989) 75-82.

[^0]: E-mail address: vina@uniovi.es.

